Topic
State of charge
About: State of charge is a(n) research topic. Over the lifetime, 12013 publication(s) have been published within this topic receiving 201419 citation(s). The topic is also known as: SoC & SOC.
Papers published on a yearly basis
Papers
More filters
TL;DR: In this article, an extended Kalman filter (EKF) was used to estimate the battery state of charge, power fade, capacity fade, and instantaneous available power of a hybrid electric vehicle battery pack.
Abstract: Battery management systems in hybrid electric vehicle battery packs must estimate values descriptive of the pack’s present operating condition. These include: battery state of charge, power fade, capacity fade, and instantaneous available power. The estimation mechanism must adapt to changing cell characteristics as cells age and therefore provide accurate estimates over the lifetime of the pack. In a series of three papers, we propose a method, based on extended Kalman filtering (EKF), that is able to accomplish these goals on a lithium ion polymer battery pack. We expect that it will also work well on other battery chemistries. These papers cover the required mathematical background, cell modeling and system identification requirements, and the final solution, together with results. In order to use EKF to estimate the desired quantities, we first require a mathematical model that can accurately capture the dynamics of a cell. In this paper we “evolve” a suitable model from one that is very primitive to one that is more advanced and works well in practice. The final model includes terms that describe the dynamic contributions due to open-circuit voltage, ohmic loss, polarization time constants, electro-chemical hysteresis, and the effects of temperature. We also give a means, based on EKF, whereby the constant model parameters may be determined from cell test data. Results are presented that demonstrate it is possible to achieve root-mean-squared modeling error smaller than the level of quantization error expected in an implementation.
1,466 citations
TL;DR: In this article, extended Kalman filtering (EKF) is used to estimate battery state-of-charge, power fade, capacity fade, and instantaneous available power for hybrid-electric-vehicle battery packs.
Abstract: Battery management systems in hybrid-electric-vehicle battery packs must estimate values descriptive of the pack’s present operating condition. These include: battery state-of-charge, power fade, capacity fade, and instantaneous available power. The estimation mechanism must adapt to changing cell characteristics as cells age and therefore provide accurate estimates over the lifetime of the pack. In a series of three papers, we propose methods, based on extended Kalman filtering (EKF), that are able to accomplish these goals for a lithium ion polymer battery pack. We expect that they will also work well on other battery chemistries. These papers cover the required mathematical background, cell modeling and system identification requirements, and the final solution, together with results. This third paper concludes the series by presenting five additional applications where either an EKF or results from EKF may be used in typical BMS algorithms: initializing state estimates after the vehicle has been idle for some time; estimating state-of-charge with dynamic error bounds on the estimate; estimating pack available dis/charge power; tracking changing pack parameters (including power fade and capacity fade) as the pack ages, and therefore providing a quantitative estimate of state-of-health; and determining which cells must be equalized. Results from pack tests are presented.
1,391 citations
TL;DR: In this paper, an extended Kalman filter (EKF) was proposed to estimate the battery state of charge, power fade, capacity fade, and instantaneous available power of a hybrid-electric-vehicle battery pack.
Abstract: Battery management systems (BMS) in hybrid-electric-vehicle (HEV) battery packs must estimate values descriptive of the pack’s present operating condition. These include: battery state of charge, power fade, capacity fade, and instantaneous available power. The estimation mechanism must adapt to changing cell characteristics as cells age and therefore provide accurate estimates over the lifetime of the pack. In a series of three papers, we propose a method, based on extended Kalman filtering (EKF), that is able to accomplish these goals on a lithium-ion polymer battery pack. We expect that it will also work well on other battery chemistries. These papers cover the required mathematical background, cell modeling and system identification requirements, and the final solution, together with results. This first paper investigates the estimation requirements for HEV BMS in some detail, in parallel to the requirements for other battery-powered applications. The comparison leads us to understand that the HEV environment is very challenging on batteries and the BMS, and that precise estimation of some parameters will improve performance and robustness, and will ultimately lengthen the useful lifetime of the pack. This conclusion motivates the use of more complex algorithms than might be used in other applications. Our premise is that EKF then becomes a very attractive approach. This paper introduces the basic method, gives some intuitive feel to the necessary computational steps, and concludes by presenting an illustrative example as to the type of results that may be obtained using EKF.
1,147 citations
TL;DR: In this article, the authors introduce commonly used methods for state-of-charge (SOC) determination and establish a relationship between the advantages of different methods and the most common applications.
Abstract: State-of-charge (SOC) determination becomes an increasingly important issue in all the applications that include a battery. Former operation strategies made use of voltage limits only to protect the battery against deep discharge and overcharge. Currently, battery operation is changing to what could rather be called battery management than simply protection. For this improved battery control, the battery SOC is a key factor. Much research work has been done in recent years to improve SOC determination. Operational conditions differ for batteries in, for example, photovoltaic applications, (hybrid)-electric vehicles or telecommunications. Hence, a given method for SOC calculation will be more suitable for a certain application than for another. The authors introduce commonly used methods for SOC determination and establish a relationship between the advantages of the different methods and the most common applications. As a main illustration, the analysis of Kalman filter technique for lead-acid battery SOC determination are presented and some results for other calculation methods as well.
1,018 citations
TL;DR: In this paper, a smart estimation method based on coulomb counting is proposed to improve the estimation accuracy for state-of-charge (SOC) estimation of lithium-ion batteries with high charging and discharging efficiencies.
Abstract: The coulomb counting method is expedient for state-of-charge (SOC) estimation of lithium-ion batteries with high charging and discharging efficiencies. The charging and discharging characteristics are investigated and reveal that the coulomb counting method is convenient and accurate for estimating the SOC of lithium-ion batteries. A smart estimation method based on coulomb counting is proposed to improve the estimation accuracy. The corrections are made by considering the charging and operating efficiencies. Furthermore, the state-of-health (SOH) is evaluated by the maximum releasable capacity. Through the experiments that emulate practical operations, the SOC estimation method is verified to demonstrate the effectiveness and accuracy.
920 citations