scispace - formally typeset
Search or ask a question
Topic

State of charge

About: State of charge is a research topic. Over the lifetime, 12013 publications have been published within this topic receiving 201419 citations. The topic is also known as: SoC & SOC.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, several equivalent circuit models of representative significance are explained, and their respective advantages and disadvantages are compared to determine and outline their reasonable applications to Li-ion batteries, and basic model verification methods are briefly introduced for the convenient use of such models.
Abstract: Batteries are critical components of electric vehicles and energy storage systems. The connection of a battery to the power grid for charge and discharge greatly affects energy storage. Therefore, an accurate and easy-to-observe battery model should be established to achieve systematic design, simulation, and SOC (state of charge) estimations. In this review, several equivalent circuit models of representative significance are explained, and their respective advantages and disadvantages are compared to determine and outline their reasonable applications to Li-ion batteries. Numerous commonly used model parameter identification principles are summarized as well, and basic model verification methods are briefly introduced for the convenient use of such models.

68 citations

Patent
25 Feb 2003
TL;DR: In this paper, the nominal optimum charging voltage is converted to a % duty cycle, and a generator is operated relative to the percent duty cycle for charging the battery, when either a battery charge current is below a predetermined value, or a current drawing accessory is turned on.
Abstract: A regulator voltage control includes measuring a current of a battery, determining a state of charge (SOC) of the battery based on the current, and determining a nominal optimum charging voltage as a function of the SOC of the battery. The nominal optimum charging voltage is converted to a % duty cycle, and a generator is operated relative to the % duty cycle for charging the battery. The nominal optimum charging voltage is reduced when either a battery charge current is below a predetermined value, or a current drawing accessory is turned on.

68 citations

Journal ArticleDOI
TL;DR: The unscented Kalman filter (UKF) algorithm was used to reduce the influence of sampling noise, and an improved algorithm with better filtering effect and SOC estimation accuracy was proposed, and the power distribution strategy based on battery SOC estimation and peak power prediction is tested and validated.
Abstract: State of Charge (SOC) is a key parameter for battery management and vehicle energy management. Recently used SOC estimation methods for lithium-ion battery for vehicles have problems of too simple a base model for the battery and large sampling noise in both the voltage and current signals. To improve the accuracy of SOC estimation and consider that the extended Kalman filter algorithm needs linear approximation of the system equation, the unscented Kalman filter (UKF) algorithm was used to reduce the influence of sampling noise, and an improved algorithm with better filtering effect and SOC estimation accuracy was proposed. Based on the SOC estimation and battery model, the peak power prediction method for the battery is proposed and used in the power distribution strategy for Series HEV. Considering the frequent changes in load current and sampling noise, an experiment was designed to verify the effectiveness and robustness of the algorithm. The experimental results show that the UKF algorithm and the improved UKF algorithm can achieve 6% and 1.5% estimation error. The power distribution strategy based on battery SOC estimation and peak power prediction is tested and validated.

68 citations

Proceedings ArticleDOI
28 Oct 2013
TL;DR: In this article, an adaptive hybrid battery model-based high-fidelity state of charge (SOC) and state of health (SOH) estimation method for rechargeable multicell batteries is proposed.
Abstract: This paper proposes an adaptive hybrid battery model-based high-fidelity state of charge (SOC) and state of health (SOH) estimation method for rechargeable multicell batteries. The hybrid battery model consists of an enhanced Coulomb counting algorithm for SOC estimation and an electrical circuit battery model. A variable-length sliding window least squares (VSWLS)-based online parameter identification algorithm is designed to estimate the electrical parameters of the electrical battery model, which are then used as the parameters of an adaptive discrete-time sliding-mode observer (ADSMO) for terminal and open-circuit voltage estimation of a battery cell. The error of the SOC estimated from the enhanced Coulomb counting algorithm is then corrected by using the SOC obtained from the ADSMO-estimated open-circuit voltage. This leads to an accurate, robust real-time SOC estimation. In addition, the maximum capacity of the cell is estimated to determine the SOH of the cell. The proposed method is validated by simulation and experimental results for a four-cell cylindrical lithium-ion battery pack.

68 citations

Patent
14 May 2003
TL;DR: In this article, a degradation degree is defined as a ratio of a total electrical quantity chargeable or dischargeable of a battery at any time point to an initial electrical quantity that is a total quantity of the battery chargeable and dischargeable upon non-degradation.
Abstract: A method of estimating a state of charge of a battery, a method of estimating an open circuit voltage of a battery, and a method and device for computing a degradation degree of a battery are provided. As a degradation degree, a ratio of a total electrical quantity chargeable or dischargeable of a battery at any time point to an initial electrical quantity that is a total electrical quantity chargeable or dischargeable of the battery upon non-degradation is computed, and by using the degradation degree, a state of charge or an open circuit voltage of the battery is accurately estimated.

68 citations


Network Information
Related Topics (5)
Battery (electricity)
169.5K papers, 1.9M citations
74% related
Electrode
226K papers, 2.3M citations
70% related
Electric power system
133K papers, 1.7M citations
69% related
Voltage
296.3K papers, 1.7M citations
69% related
Renewable energy
87.6K papers, 1.6M citations
68% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023692
20221,326
2021926
20201,245
20191,285
20181,147