scispace - formally typeset
Search or ask a question
Topic

State of charge

About: State of charge is a research topic. Over the lifetime, 12013 publications have been published within this topic receiving 201419 citations. The topic is also known as: SoC & SOC.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a state of charge estimator for rechargeable batteries that operate under variable and repetitive charging and discharging conditions is proposed, based on a state-space dynamic model of the battery which is obtained by modelling the kinetic of reactions and the diffusion phenomena.

136 citations

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the thermal runaway and its propagation behavior in the large format lithium-ion battery (LIB) with various states of charge (SOC) and found that the TR is firstly triggered on the layer near the front surface of the LIB, and then spread to the whole battery.

136 citations

Patent
14 Oct 1980
TL;DR: In this article, a battery mathematical model is used for monitoring with a capacity prediction determined from measurement of the discharge current rate and stored battery parameters, and the predicted capacity is used to provide a state-of-charge indication.
Abstract: A monitoring apparatus and method are disclosed for monitoring and/or indicating energy that a battery power source has then remaining and/or can deliver for utilization purposes as, for example, to an electric vehicle. A battery mathematical model forms the basis for monitoring with a capacity prediction determined from measurement of the discharge current rate and stored battery parameters. The predicted capacity is used to provide a state-of-charge indication. Self-calibration over the life of the battery power supply is enacted through use of a feedback voltage based upon the difference between predicted and measured voltages to correct the battery mathematical model. Through use of a microprocessor with central information storage of temperature, current and voltage, system behavior is monitored, and system flexibility is enhanced.

136 citations

Journal ArticleDOI
TL;DR: In this paper, an optimal power flow technique of a PV-battery powered fast EV charging station is presented to continuously minimize the operation cost, along with the required constraints and the operating cost function is chosen as a combination of electricity grid prices and the battery degradation cost.
Abstract: The prospective spread of electric vehicles (EV) and plug-in hybrid EV raises the need for fast charging rates. High required charging rates lead to high power demands, which may not be supported by the grid. In this paper, an optimal power flow technique of a PV-battery powered fast EV charging station is presented to continuously minimize the operation cost. The objective is to help the penetration of PV-battery systems into the grid and to support the growing need of fast EV charging. An optimization problem is formulated along with the required constraints and the operating cost function is chosen as a combination of electricity grid prices and the battery degradation cost. In the first stage of the proposed optimization procedure, an offline particle swarm optimization (PSO) is performed as a prediction layer. In the second stage, dynamic programming (DP) is performed as an online reactive management layer. Forecasted system data is utilized in both stages to find the optimal power management solution. In the reactive management layer, the outputs of the PSO are used to limit the available state trajectories used in the DP and, accordingly, improve the system computation time and efficiency. Online error compensation is implemented into the DP and fed back to the prediction layer for necessary prediction adjustments. Simulation and 1 kW prototype experimental results are successfully implemented to validate the system effectiveness and to demonstrate the benefits of using a hybrid grid tied system of PV-battery for fast EVs charging stations.

136 citations

Patent
Kaoru Kubo1
22 May 1996
TL;DR: In this paper, an internal combustion engine (ICE) is connected to a generator and a motor by a cluttered transmission, and the generator side output shaft of the torque distribution mechanism is stopped by the braking mechanism to prevent the ICE from overrunning.
Abstract: A hybrid vehicle having as a control mode at least a continuous-type parallel series hybrid vehicle (PHV) mode and a series hybrid vehicle (SHV) mode, and a control method thereof. A torque distributing mechanism is provided to distribute the output torque of an internal combustion engine (ICE) to a generator and a motor. A braking mechanism and a clutch are provided in this order between the torque distributing mechanism and the motor. The torque distributing mechanism and the motor are connected by the clutch to keep a power transmission efficiency from the ICE to driving wheels at a high value without depending on the vehicle speed in the continuous-type PHV mode. A battery can be recharged even when the vehicle is not running, by releasing the connection between the torque distributing mechanism and the motor by the clutch. When switching to the SHV mode, the motor side output shaft of the torque distributing mechanism is stopped by the braking mechanism to prevent the ICE from overrunning. An SOC sensor is used to detect the state of charge (SOC), of the battery, and when the SOC is lowered, the control mode is forcedly or automatically switched to the SHV mode. The generated power of the generator is controlled to a very small level to substantiate creeping.

135 citations


Network Information
Related Topics (5)
Battery (electricity)
169.5K papers, 1.9M citations
74% related
Electrode
226K papers, 2.3M citations
70% related
Electric power system
133K papers, 1.7M citations
69% related
Voltage
296.3K papers, 1.7M citations
69% related
Renewable energy
87.6K papers, 1.6M citations
68% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023692
20221,326
2021926
20201,245
20191,285
20181,147