scispace - formally typeset
Search or ask a question
Topic

State variable

About: State variable is a research topic. Over the lifetime, 14354 publications have been published within this topic receiving 254707 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, it was shown that the state vector of a linear system can be reconstructed from observations of the system inputs and outputs, and that the observer which reconstructs this state vector is itself a linear systems whose complexity decreases as the number of output quantities available increases.
Abstract: In much of modern control theory designs are based on the assumption that the state vector of the system to be controlled is available for measurement. In many practical situations only a few output quantities are available. Application of theories which assume that the state vector is known is severely limited in these cases. In this paper it is shown that the state vector of a linear system can be reconstructed from observations of the system inputs and outputs. It is shown that the observer, which reconstructs the state vector, is itself a linear system whose complexity decreases as the number of output quantities available increases. The observer may be incorporated in the control of a system which does not have its state vector available for measurement. The observer supplies the state vector, but at the expense of adding poles to the over-all system.

1,581 citations

Journal ArticleDOI
TL;DR: The adjoint-state method as discussed by the authors is a well-known method in the numerical community for computing the gradient of a functional with respect to the model parameters when this functional depends on those model parameters through state variables, which are solutions of the forward problem.
Abstract: SUMMARY Estimating the model parameters from measured data generally consists of minimizing an error functional. A classic technique to solve a minimization problem is to successively determine the minimum of a series of linearized problems. This formulation requires the Frechet derivatives (the Jacobian matrix), which can be expensive to compute. If the minimization is viewed as a non-linear optimization problem, only the gradient of the error functional is needed. This gradient can be computed without the Frechet derivatives. In the 1970s, the adjoint-state method was developed to efficiently compute the gradient. It is now a well-known method in the numerical community for computing the gradient of a functional with respect to the model parameters when this functional depends on those model parameters through state variables, which are solutions of the forward problem. However, this method is less well understood in the geophysical community. The goal of this paper is to review the adjoint-state method. The idea is to define some adjoint-state variables that are solutions of a linear system. The adjoint-state variables are independent of the model parameter perturbations and in a way gather the perturbations with respect to the state variables. The adjoint-state method is efficient because only one extra linear system needs to be solved. Several applications are presented. When applied to the computation of the derivatives of the ray trajectories, the link with the propagator of the perturbed ray equation is established.

1,514 citations

Book
01 Jan 1971
TL;DR: The relationship between state variable and transfer function descriptions of linear feedback control systems is discussed in this paper, along with the relationship between the Cayley Hamilton Theorem and state variable descriptions of systems.
Abstract: 1. Background and Preview. 2. Highlights of Classical Control Theory. 3. State Variables and the State Space Description of Dynamic Systems. 4. Fundamentals of Matrix Algebra. 5. Vectors and Linear Vector Spaces. 6. Simultaneous Linear Equations. 7. Eigenvalues and Eigenvectors. 8. Functions of Square Matrices and the Cayley-Hamilton Theorem. 9. Analysis of Continuous and Discrete Time State Equations. 10. Stability. 11. Controllability and Observability for Linear Systems. 12. The Relationship between State Variable and Transfer Function Descriptions of Systems. 13. Design of Linear Feedback Control Systems. 14. An Introduction to Optimal Control Theory. 15. An Introduction to Nonlinear Control Systems.

1,419 citations

Book
31 Aug 1996
TL;DR: The basic equations of metabolic control analysis are rewritten in terms of co-response coefficients and internal response coefficients to describe the interaction of optimization methods and the interrelation with evolution.
Abstract: Introduction Fundamentals of biochemical modeling Balance equations Rate laws Generalized mass-action kinetics Various enzyme kinetic rate laws Thermodynamic flow-force relationships Power-law approximation Steady states of biochemical networks General considerations Stable and unstable steady states Multiple steady states Metabolic oscillations Background Mathematical conditions for oscillations Glycolytic oscillations Models of intracellular calcium oscillations A simple three-variable model with only monomolecular and bimolecular reactions Possible physiological significance of oscillations Stoichiometric analysis Conservation relations Linear dependencies between the rows of the stoichiometry matrix Non-negative flux vectors Elementary flux modes Thermodynamic aspects A generalized Wegscheider condition Strictly detailed balanced subnetworks Onsager's reciprocity reactions for coupled enyme reactions Time hierarchy in metabolism Time constants The quasi-steady-state approximation The Rapid equilibrium approximation Modal analysis Metabolic control analysis Basic definitions A systematic approach Theorems of metabolic control analysis Summation theorems Connectivity theorems Calculation of control coefficients using the theorems Geometrical interpretation Control analysis of various systems General remarks Elasticity coefficients for specific rate laws Control coefficients for simple hypothetical pathways Unbranched chains A branched system Control of erythrocyte energy metabolism The reaction system Basic model Interplay of ATP production and ATP consumption Glycolytic energy metabolism and osmotic states A simple model of oxidative phosphorylation A three-step model of serine biosynthesis Time-dependent control coefficients Are control coefficients always parameter independent? Posing the problem A system without conserved moieties A system with a conserved moiety A system including dynamic channeling Normalized versus non-normalized coefficients Analysis in terms of variables other than steady-state concentrations and fluxes General analysis Concentration ratios and free-energy-differences as state variables Entropy production as response variable Control of transient times Control of oscillations A second-order approach A quantitative approach to metabolic regulations Co-response coefficients Fluctuations of internal variables versus parameter perturbations Internal response coefficients Rephrasing the basic equations of metabolic control analysis in terms of co-response coefficients and internal response coefficients Control within and between subsystems Modular approach Overall elasticities Overall control coefficients Flux control insusceptibility Control exerted by elementary steps in enzyme catalysis Control analysis of metabolic channeling Comparison of metabolic control analysis and power-law formalism Computational aspects Application of optimization methods and the interrelation with evolution Optimization of the catalytic properties of single enzymes Basic assumptions Optimal values of elementary rate constants Optimal Michaelis constants Optimization of multienzyme systems Maximization of steady-state flux Influence of osmotic constraints and minimization of intermediate concentrations Minimization of transient times Optimal stoichiometries.

1,258 citations

Journal ArticleDOI
TL;DR: In this article, a self-contained exposition is given of an approach to mathematical models, in particular to the theory of dynamical systems, which leads to a new view of the notions of controllability and observability, and of the interconnection of systems.
Abstract: A self-contained exposition is given of an approach to mathematical models, in particular, to the theory of dynamical systems. The basic ingredients form a triptych, with the behavior of a system in the center, and behavioral equations with latent variables as side panels. The author discusses a variety of representation and parametrization problems, in particular, questions related to input/output and state models. The proposed concept of a dynamical system leads to a new view of the notions of controllability and observability, and of the interconnection of systems, in particular, to what constitutes a feedback control law. The final issue addressed is that of system identification. It is argued that exact system identification leads to the question of computing the most powerful unfalsified model. >

1,219 citations


Network Information
Related Topics (5)
Robustness (computer science)
94.7K papers, 1.6M citations
88% related
Nonlinear system
208.1K papers, 4M citations
87% related
Control theory
299.6K papers, 3.1M citations
86% related
Optimization problem
96.4K papers, 2.1M citations
85% related
Artificial neural network
207K papers, 4.5M citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202378
2022170
2021527
2020671
2019667
2018642