scispace - formally typeset
Topic

Static induction transistor

About: Static induction transistor is a(n) research topic. Over the lifetime, 8155 publication(s) have been published within this topic receiving 107058 citation(s). The topic is also known as: SIT.


Papers
More filters
Journal ArticleDOI

[...]

TL;DR: In this paper, the resonant gate transistor (RGT) is described as an electrostatically excited tuning fork employing field effect transistor readout, which can be batch-fabricated in a manner consistent with silicon technology.
Abstract: A device is described which permits high- Q frequency selection to be incorporated into silicon integrated circuits. It is essentially an electrostatically excited tuning fork employing field-effect transistor "readout." The device, which is called the resonant gate transistor (RGT), can be batch-fabricated in a manner consistent with silicon technology. Experimental RGT's with gold vibrating beams operating in the frequency range 1 kHz 0 Q 's as high as 500 and overall input-output voltage gain approaching + 10 dB have been constructed. The mechanical and electrical operation of the RGT is analyzed. Expressions are derived for both the beam and the detector characteristic voltage, the device center frequency, as well as the device gain and gain-stability product. A batch-fabrication procedure for the RGT is demonstrated and theory and experiment corroborated. Both single- and multiple-pole pair band pass filters are fabricated and discussed. Temperature coefficients of frequency as low as 90- 150 ppm/°C for the finished batch-fabricated device were demonstrated.

1,116 citations

Patent

[...]

28 Mar 2006
TL;DR: In this article, a gate insulator is coupled to the source electrode, drain electrode, and gate electrode in a thin-film transistor (TFT) to operate at low operating voltage.
Abstract: A thin film transistor (TFT) includes a source electrode, a drain electrode, and a gate electrode. A gate insulator is coupled to the source electrode, drain electrode, and gate electrode. The gate insulator includes room temperature deposited high-K materials so as to allow said thin film transistor to operate at low operating voltage.

1,037 citations

Journal ArticleDOI

[...]

TL;DR: In this article, the authors describe a metaloxide-semiconductor MOS transistor concept in which there are no junctions and the channel doping is equal in concentration and type to the source and drain extension doping.
Abstract: This paper describes a metal-oxide-semiconductor MOS transistor concept in which there are no junctions. The channel doping is equal in concentration and type to the source and drain extension doping. The proposed device is a thin and narrow multigate field-effect transistor, which can be fully depleted and turned off by the gate. Since this device has no junctions, it has simpler fabrication process, less variability, and better electrical properties than classical MOS devices with source and drain PN junctions.

801 citations

Journal ArticleDOI

[...]

TL;DR: In this paper, a gate injection transistor (GIT) was proposed to increase the electron density in the channel, resulting in a dramatic increase of the drain current owing to the conductivity modulation.
Abstract: We have developed a normally-off GaN-based transistor using conductivity modulation, which we call a gate injection transistor (GIT). This new device principle utilizes hole-injection from the p-AlGaN to the AlGaN/GaN heterojunction, which simultaneously increases the electron density in the channel, resulting in a dramatic increase of the drain current owing to the conductivity modulation. The fabricated GIT exhibits a threshold voltage of 1.0 V with a maximum drain current of 200 mA/mm, in which a forward gate voltage of up to 6 V can be applied. The obtained specific ON-state resistance (RON . A) and the OFF-state breakdown voltage (BV ds) are 2.6 mOmega . cm2 and 800 V, respectively. The developed GIT is advantageous for power switching applications.

727 citations

Journal ArticleDOI

[...]

TL;DR: The double-gate control of silicon-on-insulator (SOI) transistors is used to force the whole silicon film (interface layers and volume) in strong inversion as discussed by the authors.
Abstract: The double-gate control of silicon-on-insulator (SOI) transistors is used to force the whole silicon film (interface layers and volume) in strong inversion. This original method of transistor operation offers excellent device performance, in particular great increases in subthreshold slope, transconductance, and drain current. A simulation program and experiments on SIMOX structures are used to study the new device.

710 citations


Network Information
Related Topics (5)
Transistor
138K papers, 1.4M citations
86% related
Substrate (electronics)
116.1K papers, 1.3M citations
82% related
Capacitor
166.6K papers, 1.4M citations
81% related
Silicon
196K papers, 3M citations
80% related
Voltage
296.3K papers, 1.7M citations
79% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20211
20203
20196
20189
201747
2016111