scispace - formally typeset
Search or ask a question
Topic

Static induction transistor

About: Static induction transistor is a research topic. Over the lifetime, 8155 publications have been published within this topic receiving 107058 citations. The topic is also known as: SIT.


Papers
More filters
Patent
31 Mar 2003
TL;DR: In this article, a technique for reducing the on-resistance of a power MOSFET was proposed, where a depletion layer is expanded to the inside of the semiconductor material under the polysilicon gate.
Abstract: A technique for reducing an on-resistance of a transistor is provided. A power MOSFET of the present invention has a semiconductor material which is disposed under a polysilicon gate and composed of polysilicon into which impurities are doped at low concentration. Therefore, a depletion layer is expanded to the inside of the semiconductor material under the polysilicon gate. Since the electric field strengths are uniform from the surface of a drain layer to a depth of the bottom surface of the semiconductor material and a high electric field is not generated at one site, the avalanche breakdown voltage of the transistor is increased. Therefore, the concentration of impurities in drain layer can be made higher than that in a conventional transistor and thereby the on-resistance of the transistor 1 can be reduced.

31 citations

Patent
20 Apr 1983
TL;DR: In this article, the base-emitter voltage of a switching transistor is compared in a comparator with a reference voltage, and a switching-off device for switching off the driving pulses of the switching transistor responds to this signal.
Abstract: A protective circuit for a switching transistor is disclosed in which the base-emitter voltage of the switching transistor is compared in a comparator with a reference voltage. If the collector current of the switching transistor increases, the base-emitter voltage also increases, with the base current remaining constant. As soon as the base-emitter voltage exceeds the reference voltage, a signal is delivered at the output of the comparator. A switching-off device for switching off the driving pulses of the switching transistor responds to this signal so that a switching-on pulse present at the base of the switching transistor is switched off. The reference voltage is fixed so that the switching transistor is protected against overload by excessively large collector currents.

31 citations

Patent
23 Jan 1984
TL;DR: In this article, a gate-source structure and fabrication method for a static induction transistor having improved gain and frequency characteristics and having relatively simple fabrication requirements are embodied by gate regions diffused into the bottom of parallel recessed grooves located in a high resistivity epitaxial semiconductor layer.
Abstract: A gate-source structure and fabrication method for a static induction transistor having improved gain and frequency characteristics and having relatively simple fabrication requirements. The method and the device are embodied by gate regions diffused into the bottom of parallel recessed grooves located in a high resistivity epitaxial semiconductor layer, the surface of the semiconductor layer having a previously diffused source region located between the recessed grooves. The walls of the recessed grooves are covered with silicon dioxide.

31 citations

Patent
Hartmut Seiler1
10 Aug 1977
TL;DR: In this article, the main switching transistor is serially connected between a load 12, 12' and a source of supply 13, R. An auxiliary transistor 15, the base of which is controlled through a voltage sensing device, for example a Zener diode 18 has its main switching path connected to the base, to control the main switch transistor to become conductive in case of overvoltage, sensed by breakdown of the Zener diodes 18.
Abstract: The main switching transistor 11 is serially connected between a load 12, 12' and a source of supply 13, R. An auxiliary transistor 15, the base of which is controlled through a voltage sensing device, for example a Zener diode 18 has its main switching path connected to the base of the main switching transistor 11 to control the main switching transistor 11 to become conductive in case of overvoltage, sensed by breakdown of the Zener diode 18. If the load is inductive, an additional inductive turn-off current bypass transistor 22, 22' can be provided (FIG. 2, 3), rendered conductive when overvoltage of an inductive kick is sensed, to bypass turn-off current around the main semiconductor switching transistor, or, in an alternative connection, to control the main switching transistor to again become conductive and itself bypass the inductive turn-off current, so that current flow due to overvoltages, or inductive turn-off current will be conducted by semiconductors operated under conditions of controlled conduction.

31 citations

Patent
19 Nov 1991
TL;DR: In this paper, an insulated gate field effect transistor (426, 452) has been used to reduce gate oxide stress, and the drain end of the conductive gate (434) is disposed on top of a thick insulator region (432) that also acts to mitigate the high electric fields present when the transistor is subjected to a high voltage transient.
Abstract: An insulated-gate field-effect transistor (426, 452) has reduced gate oxide stress. According to one embodiment, the control gate (458) has a doped region (460) adjacent the source end of the transistor (452), and an undoped dielectric portion (462) adjacent the gate end. According to another embodiment, the drain end of the conductive gate (434) is disposed on top of a thick insulator region (432) that also acts to mitigate the high electric fields present when the transistor is subjected to a high voltage transient.

31 citations


Network Information
Related Topics (5)
Transistor
138K papers, 1.4M citations
86% related
Substrate (electronics)
116.1K papers, 1.3M citations
82% related
Capacitor
166.6K papers, 1.4M citations
81% related
Silicon
196K papers, 3M citations
80% related
Voltage
296.3K papers, 1.7M citations
79% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20234
20225
20211
20203
20196
20189