scispace - formally typeset
Search or ask a question
Topic

Static induction transistor

About: Static induction transistor is a research topic. Over the lifetime, 8155 publications have been published within this topic receiving 107058 citations. The topic is also known as: SIT.


Papers
More filters
Patent
Naoto Okumura1
26 Oct 1998
TL;DR: In this paper, an integrated circuit device capable of effectively shutting off the power supply in a powerdown mode is presented. But it is not shown how to prevent a leakage current, which originates from another CMOS tri-state driver having a common output terminal with the present P-channel MOS transistors, from flowing into the transistors.
Abstract: An integrated circuit device capable of effectively shutting off the power supply in a powerdown mode. The integrated circuit device is connected to a first (ground) power supply, a second power supply that continuously provides power, and a third power supply that halts power supply during the powerdown mode. It includes a controller and a CMOS tri-state driver consisting of a series connection of a P-channel MOS transistor and an N-channel MOS transistor. The P-channel MOS transistor has its source connected to the third power supply, its backgates connected to the second power supply and its gate connected to the controller. The N-channel MOS transistor has its source and backgate connected to the first power supply, its drain connected to the drain of the P-channel MOS transistor and its gate connected to the controller. The controller controls such that the gate of the P-channel MOS transistor is maintained at a high level and the gate of the N-channel MOS transistor is maintained at a low level during the powerdown. Thus, the backgate and the gate of the P-channel MOS transistor are both pulled-up to the high level, thereby keeping the output of the CMOS tri-state driver at a high-impedance state during the powerdown mode. This makes it possible to positively prevent a leakage current, which originates from another CMOS tri-state driver having a common output terminal with the present CMOS tri-state driver, from flowing into the P-channel MOS transistor.

30 citations

Journal ArticleDOI
TL;DR: In this paper, a new five-parameter MOS transistor mismatch model is introduced capable of predicting transistor mismatch with very high accuracy for ohmic and saturation regions, including short-channel transistors.
Abstract: A new five-parameter MOS transistor mismatch model is introduced capable of predicting transistor mismatch with very high accuracy for ohmic and saturation regions, including short-channel transistors. The new model is based on splitting the contribution of the mobility degradation parameter mismatch /spl Delta//spl theta/ into two components, and modulating them as the transistor transitions from ohmic to saturation regions. The model is tested for a wide range of transistor sizes (30), and shows excellent precision, never reported before for such a wide range of transistor sizes, including short-channel transistors.

30 citations

Patent
07 Aug 1991
TL;DR: In this paper, a zero-voltage crossing detector includes a transistor circuit in combination with comparator circuitry for determining when the voltage across a soft-switching device crosses zero.
Abstract: A zero-voltage crossing detector includes a transistor circuit in combination with comparator circuitry for determining when the voltage across a soft-switching device crosses zero. The transistor circuit includes a series combination of a detector transistor and a source, or emitter, load resistance coupled across the soft-switching device. The gate, or base, of the transistor is coupled via a resistive voltage divider to a dc supply. The source, or emitter, of the transistor is coupled to the comparator circuitry for comparing the voltage across the load resistance to a zero-voltage reference. During intervals when the voltage across the soft-switching device is greater than the input voltage to the detector transistor, the detector transistor is off, causing the output of the transistor circuit to equal the input voltage. Othewise, the detector transistor is active and the output voltage equals the voltage across the soft-switching device, so that the comparator circuitry generates signals to indicate the zero-voltage crossings.

30 citations

Patent
27 Jul 1984
TL;DR: A voltage regulating system for an automotive vehicle having a switching transistor connected to a field winding of an alternating current generator and a regulator for comparing a battery voltage with a reference value is presented in this article.
Abstract: A voltage regulating system for an automotive vehicle having a switching transistor connected to a field winding of an alternating current generator and a regulator for comparing a battery voltage with a reference value and for driving the transistor into a conductive state when the battery voltage is lower than the reference value. A current limiting circuit is provided for limiting the field current when the switching transistor is going to be driven into the conductive state over a predetermined interval, so that a maximum charging current can be obtained and an unfavorable heating of the switching transistor can be avoided.

30 citations

Patent
06 Mar 2002
TL;DR: An on-chip temperature detection device includes: a bipolar type power transistor; a mirror transistor in which a collector current, which is proportional to the collector current of a power transistor, flows; a current detection section that detects the collector currents of the mirror transistor; and a voltage detection section detecting a voltage between a base and an emitter of the power transistor as discussed by the authors.
Abstract: An on-chip temperature detection device includes: a bipolar type power transistor; a mirror transistor in which a collector current, which is proportional to a collector current of the power transistor, flows; a current detection section that detects the collector current of the mirror transistor; a voltage detection section that detects a voltage between a base and an emitter of the power transistor; and a calculation section that calculates a chip temperature of the power transistor, based upon the collector current of the mirror transistor detected by the current detection section, and upon the voltage between the base and the emitter of the power transistor detected by the voltage detection section.

30 citations


Network Information
Related Topics (5)
Transistor
138K papers, 1.4M citations
86% related
Substrate (electronics)
116.1K papers, 1.3M citations
82% related
Capacitor
166.6K papers, 1.4M citations
81% related
Silicon
196K papers, 3M citations
80% related
Voltage
296.3K papers, 1.7M citations
79% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20234
20225
20211
20203
20196
20189