scispace - formally typeset
Search or ask a question
Topic

Static induction transistor

About: Static induction transistor is a research topic. Over the lifetime, 8155 publications have been published within this topic receiving 107058 citations. The topic is also known as: SIT.


Papers
More filters
Patent
24 May 1994
TL;DR: An integrated circuit charge pump circuit including a plurality of stages, each stage including a first N type field effect switching transistor device having source and drain terminals connected in series with the source and the drain terminals of all other stages, is described in this paper.
Abstract: An integrated circuit charge pump circuit including a plurality of stages, each stage including a first N type field effect switching transistor device having source and drain terminals connected in series with the source and drain terminals of all other stages, a second N type field effect control transistor device having drain and source terminals connecting the drain terminal and the gate terminal of the first switching transistor device, and a storage capacitor joined to the source terminal of the first device; a source of voltage to be pumped is connected to the drain terminal of the first device of the first stage. A first series of clock pulses is applied to the gate terminals of the first switching transistor devices in every other stage of the charge pump and to the gate terminals of the second control transistor devices in stages between; and a second series of clock pulses which do not overlap the first series of clock pulses is applied to the gate terminals of the first switching transistor devices in alternate stages of the charge pump and to the gate terminals of the second control transistor devices in stages between the alternate stages. These pulses cause the switching transistor to switch on and off in alternate stages in a manner that the gate terminal goes higher than the drain terminal so that charge is transferred without threshold drop between stages and high current as well as high voltage is pumped to the output terminal.

29 citations

Patent
23 Dec 1996
TL;DR: In this article, a switch network (22) in a Field Programmable Gate Array (FPGA) which operates as a combination of a programming transistor (34) and a ferroelectric transistor (32) is presented.
Abstract: A switch network (22) in a Field Programmable Gate Array (FPGA) which operates as a combination of a programming transistor (34) and a ferroelectric transistor (32). The programming transistor (34) is selected to transfer a polarizing voltage to a gate terminal of the ferroelectric transistor (32) for programming the ferroelectric transistor (32) in an on-state. The ferroelectric transistor (32) functions as a nonvolatile latch and pass device to provide the electrical interconnect path that links multiple Configurable Logic Blocks (CLBs). The programming transistor (34) is selected to transfer a depolarizing voltage to the gate terminal of the ferroelectric transistor (32) for programming the ferroelectric transistor (32) in an off-state.

29 citations

Patent
Joseph C. Buxton1
14 Jun 2001
TL;DR: In this paper, a linear voltage regulator using a FET pass transistor uses the capacitance of the pass transistor's gate as a timing element, and when it droops below a voltage indicative of a short-circuit condition, the regulator's drive signal is disconnected from the FET's gate.
Abstract: A hiccup-mode short circuit protection circuit and method for a linear voltage regulator using a FET pass transistor uses the capacitance of the pass transistor's gate as a timing element. The regulator's output voltage is monitored, and when it droops below a voltage indicative of a short-circuit condition, the regulator's drive signal is disconnected from the pass transistor. While the short-circuit condition persists, a first current is provided to charge the pass transistor's gate capacitance. When the gate voltage rises above a first predetermined threshold, a second current is provided to further charge the gate capacitance. When the gate voltage rises above a second predetermined threshold, the gate capacitance is discharged. The gate capacitance is cyclically charged and discharged in this way unless the output voltage rises to indicate that the short-circuit condition has cleared, in which case the regulator's drive signal is restored to the pass transistor's gate. To reduce average power consumption, the magnitudes of the first and second currents and the values of the threshold voltages are chosen such that the pass transistor's ON duty cycle is about 10%.

29 citations

Journal ArticleDOI
TL;DR: In this article, the authors have designed and fabricated GaN static induction transistor using self-aligned technology, which was accomplished mainly by using a SiO2 lift-off step in buffered oxide etch (BOE).
Abstract: The rapid development of RF power electronics requires amplifier operating at high frequency with high output power. GaN-based HEMTs as RF devices have made continuous progress in the last two decades showing great potential for working up to G band range. However, vertical structure is preferred to obtain higher output power. In this paper, we have designed and fabricated GaN static induction transistor using the self-aligned technology, which was accomplished mainly by using a SiO2 lift-off step in buffered oxide etch (BOE). By optimizing the time in ultrasonic bath and in BOE, the SiO2 and the metal on top were removed completely which resulted in the gate metal only on the sidewalls. Both dry and wet etch techniques were investigated to reduce the gate leakage on the etched surface. The low power dry etch combined with the tetramethylammonium hydroxide wet etch can effectively reduce the etch damages, decrease the gate leakage and enhance the gate control over the channel.

29 citations

Patent
05 Mar 1991
TL;DR: In this paper, the authors present a method and structure for actively controlling the voltage applied to the channel of field effect transistors (FE transistors), where a transistor is fabricated to connect the channel region to the main channel region.
Abstract: The described embodiments of the present invention provide a method and structure for actively controlling the voltage applied to the channel of field effect transistors. In the described embodiments, a transistor connected to the channel region is fabricated. The channel transistor has opposite conductivity type to the transistor using the main channel region. The source of the channel transistor is connected to the channel and the drain of the channel transistor is connected to a reference voltage. The same gate is used to control the channel transistor and the main transistor. When a voltage which causes the main transistor to be on is applied, the channel transistor is off, thus allowing the channel to float and allowing higher drive current. On the other hand, when a voltage to turn off the main transistor is applied, the channel transistor is turned on, thus clamping the channel region to the reference voltage. This allows for consistent threshold voltage control of the main transistor. In a preferred embodiment, the channel of the main transistor is used as the source of the channel transistor and the gate of the main transistor extends onto the channel region of the channel transistor. The reference voltage is then connected to the drain region which is formed on the opposite side of the channel transistor channel region from the main transistor's channel.

29 citations


Network Information
Related Topics (5)
Transistor
138K papers, 1.4M citations
86% related
Substrate (electronics)
116.1K papers, 1.3M citations
82% related
Capacitor
166.6K papers, 1.4M citations
81% related
Silicon
196K papers, 3M citations
80% related
Voltage
296.3K papers, 1.7M citations
79% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20234
20225
20211
20203
20196
20189