scispace - formally typeset
Search or ask a question
Topic

Static routing

About: Static routing is a research topic. Over the lifetime, 25733 publications have been published within this topic receiving 576732 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The theoretical background for the design of deadlock-free adaptive routing algorithms for virtual cut-through and store-and-forward switching is developed and a design methodology is proposed, which automatically supplies fully adaptive, minimal and non-minimal routing algorithms.
Abstract: This paper develops the theoretical background for the design of deadlock-free adaptive routing algorithms for virtual cut-through and store-and-forward switching. This theory is valid for networks using either central buffers or edge buffers. Some basic definitions and three theorems are proposed, developing conditions to verify that an adaptive algorithm is deadlock-free, even when there are cyclic dependencies between routing resources. Moreover, we propose a necessary and sufficient condition for deadlock-free routing. Also, a design methodology is proposed. It supplies fully adaptive, minimal and non-minimal routing algorithms, guaranteeing that they are deadlock-free. The theory proposed in this paper extends the necessary and sufficient condition for wormhole switching previously proposed by us. The resulting routing algorithms are more flexible than the ones for wormhole switching. Also, the design methodology is much easier to apply because it automatically supplies deadlock-free routing algorithms.

145 citations

Proceedings ArticleDOI
08 Dec 2014
TL;DR: This paper proposes an optimization method to minimize energy consumption for a backbone network while respecting capacity constraints on links and rule space constraints on routers and introduces efficient greedy heuristic algorithm.
Abstract: Software-defined Networks (SDN), in particular OpenFlow, is a new networking paradigm enabling innovation through network programmability. Over past few years, many applications have been built using SDN such as server load balancing, virtual-machine migration, traffic engineering and access control. In this paper, we focus on using SDN for energy-aware routing (EAR). Since traffic load has a small influence on power consumption of routers, EAR allows to put unused links into sleep mode to save energy. SDN can collect traffic matrix and then computes routing solutions satisfying QoS while being minimal in energy consumption. However, prior works on EAR have assumed that the table of OpenFlow switch can hold an infinite number of rules. In practice, this assumption does not hold since the flow table is implemented with Ternary Content Addressable Memory (TCAM) which is expensive and power-hungry. In this paper, we propose an optimization method to minimize energy consumption for a backbone network while respecting capacity constraints on links and rule space constraints on routers. In details, we present an exact formulation using Integer Linear Program (ILP) and introduce efficient greedy heuristic algorithm. Based on simulations, we show that using this smart rule space allocation, it is possible to save almost as much power consumption as the classical EAR approach.

145 citations

Proceedings ArticleDOI
09 Jul 2003
TL;DR: This paper proposes and evaluates an approach, based on manipulating the set of next hops for routing prefixes, that is capable of realizing near optimal traffic distribution without any change to existing routing protocols and forwarding mechanisms.
Abstract: Traffic engineering is aimed at distributing traffic so as to "optimize" a given performance criterion. The ability to carry out such an optimal distribution depends on both the routing protocol and the forwarding mechanisms in use in the network. In IP networks running the OSPF or IS-IS protocols, routing is over shortest paths, and forwarding mechanisms are constrained to distributing traffic uniformly over equal cost shortest paths. These constraints often make achieving an optimal distribution of traffic impossible. In this paper, we propose and evaluate an approach, based on manipulating the set of next hops for routing prefixes, that is capable of realizing near optimal traffic distribution without any change to existing routing protocols and forwarding mechanisms. In addition, we explore the tradeoff that exists between performance and the overhead associated with the additional configuration steps that our solution requires. The paper's contributions are in formulating and evaluating an approach to traffic engineering for existing IP networks that achieves performance levels comparable to that offered when deploying other forwarding technologies such as MPLS.

145 citations

Proceedings ArticleDOI
27 Nov 2000
TL;DR: An enhanced version of the routing protocol, Landmark Ad Hoc Routing (LANMAR), that combines the features of Fisheye State Routing and Landmark routing and features landmark election to cope with the dynamic and mobile environment is presented.
Abstract: We present an enhanced version of the routing protocol, Landmark Ad Hoc Routing (LANMAR). LANMAR combines the features of Fisheye State Routing (FSR) and Landmark routing. The enhanced version features landmark election to cope with the dynamic and mobile environment. Other advantages of LANMAR include the use of landmarks for each logical group (e.g., a team of co-workers at a convention or a tank battalion in the battlefield) in order to reduce routing update overhead in large networks, and the exchanging of neighborhood link state only with neighbors. When the network size grows, remote groups of nodes are "summarized" by the corresponding landmarks. As a result, each node will maintain accurate routing information about immediate neighborhood; at the same time it will keep track of the routing directions to the landmark nodes and thus, to remote groups. Simulation experiments show that the enhanced version suffers some performance degradation at steady state because of election overhead. However, it still provides an efficient and scalable routing solution in a mobile, ad hoc environment. Moreover, the election provides a much needed recovery from landmark failures.

145 citations

Proceedings ArticleDOI
13 Apr 2008
TL;DR: This work provides important guidelines for designing routing metrics and identifies the specific properties that a routing metric must have in order to be combined with certain type of routing protocols.
Abstract: The design of a routing protocol must be based on the characteristics of its target networks. The diversity of wireless networks motivates the design of different routing metrics, capturing different aspects of wireless communications. The design of routing metrics, however, is not arbitrary since it has a great impact on the proper operation of routing protocols. Combining a wrong type of routing metrics with a routing protocol may result in routing loops and suboptimal paths. In this paper, we thoroughly study the relationship between routing metrics and routing protocols. Our work provides important guidelines for designing routing metrics and identifies the specific properties that a routing metric must have in order to be combined with certain type of routing protocols.

145 citations


Network Information
Related Topics (5)
Network packet
159.7K papers, 2.2M citations
95% related
Wireless network
122.5K papers, 2.1M citations
93% related
Wireless ad hoc network
49K papers, 1.1M citations
93% related
Wireless sensor network
142K papers, 2.4M citations
93% related
Server
79.5K papers, 1.4M citations
92% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202391
2022209
202130
202035
201962
2018132