scispace - formally typeset
Search or ask a question
Topic

Static routing

About: Static routing is a research topic. Over the lifetime, 25733 publications have been published within this topic receiving 576732 citations.


Papers
More filters
Patent
18 Sep 1990
TL;DR: In this article, the authors propose a routing method that routes cells which are transferred through one of a plurality of paths within an asynchronous transfer mode (ATM) switching system (50, 10) selected by routing information.
Abstract: A routing method routes cells which are transferred through one of a plurality of paths within an asynchronous transfer mode (ATM) switching system (50, 10) selected by routing information. The routing method includes the steps of adding first routing information to incoming cells at an input stage of the ATM switching system when supplying the cells to the ATM switching system, generating a route switching confirmation cell in response to a route switching instruction and for adding second routing information to incoming cells thereafter so as to supply the route switching confirmation cell and the cells added with the second routing information to the ATM switching system, where the second routing information is different from the first routing information and is determined by the route switching instruction, comparing routing information of the cells with the second routing information at an output stage of the ATM switching system in response to the route switching instruction, outputting each cell from the ATM switching system having routing information different from the second routing information as it is, and temporarily storing each cell from the ATM switching system having routing information identical to the second routing information and reading out and outputting the stored cell after the route switching confirmation cell is output from the ATM switching system.

127 citations

Journal ArticleDOI
TL;DR: An on-demand delay-constrained unicast routing protocol to provide efficient QoS routing support in wireless ad hoc networks is devised and a review of previous work addressing the issue of route selection subject to QoS constraint(s) is presented.
Abstract: QoS routing plays an important role for providing QoS in wireless ad hoc networks. The goals of QoS routing are in general twofold: selecting routes with satisfied QoS requirement(s), and achieving global efficiency in resource utilization. In this article we first discuss some key design considerations in providing QoS routing support, and present a review of previous work addressing the issue of route selection subject to QoS constraint(s). We then devise an on-demand delay-constrained unicast routing protocol. Various strategies are employed in the protocol to reduce the communication overhead in acquiring cost-effective delay-constrained routes. Simulation results are used to verify our expectation of the high performance of the devised protocol. Finally, we discuss some possible future directions for providing efficient QoS routing support in wireless ad hoc networks.

127 citations

Journal ArticleDOI
TL;DR: This work analyzes the extent to which RPL has lived up to the expectations defined by the IETF requirements, and ties the analysis to current trends, identifying the challenges RPL must face to remain on the forefront of IoT technology.
Abstract: RPL, the IPv6 Routing Protocol for low-power and lossy networks, is considered the de facto routing protocol for the Internet of Things (IoT). Since its standardization, RPL has contributed to the advancement of communications in the world of tiny, embedded networking devices by providing, along with other standards, a baseline architecture for IoT. Several years later, we analyze the extent to which RPL has lived up to the expectations defined by the IETF requirements, and tie our analysis to current trends, identifying the challenges RPL must face to remain on the forefront of IoT technology.

127 citations

Journal ArticleDOI
TL;DR: An analytical model is presented for the performance evaluation of hypercube computers aimed at modeling a deadlock-free wormhole routing scheme prevalent on second generation hypercube systems and extended to virtual cut-through routing and random wormholes routing techniques.
Abstract: We present an analytical model for the performance evaluation of hypercube computers. This analysis is aimed at modeling a deadlock-free wormhole routing scheme prevalent on second generation hypercube systems. Probability of blocking and average message delay are the two performance measures discussed. We start with the communication traffic to find the probability of blocking. The traffic analysis can capture any message destination distribution. Next, we find the average message delay that consists of two parts. The first part is the actual message transfer delay between any source and destination nodes. The second part of the delay is due to blocking caused by the wormhole routing scheme. The analysis is also extended to virtual cut-through routing and random wormhole routing techniques. The validity of the model is demonstrated by comparing analytical results with those from simulation. >

127 citations

Journal ArticleDOI
TL;DR: A novel four-dimensional (4D) evaluation framework for QoS routing algorithms, whereby the 4D correspond to the type of topology, two forms of scalability of aTopology, and the tightness of the delay constraint, which identifies two algorithms, namely Lagrange relaxation-based aggregated cost (LARAC) and search space reduction delay-cost-constrained routing (SSR+DCCR), that perform very well in most of the4D evaluation space
Abstract: A variety of communication networks, such as industrial communication systems, have to provide strict delay guarantees to the carried flows. Fast and close to optimal quality of service (QoS) routing algorithms, e.g., delay-constrained least-cost (DCLC) routing algorithms, are required for routing flows in such networks with strict delay requirements. The emerging software-defined networking (SDN) paradigm centralizes the network control in SDN controllers that can centrally execute QoS routing algorithms. A wide range of QoS routing algorithms have been proposed in the literature and examined in individual studies. However, a comprehensive evaluation framework and quantitative comparison of QoS routing algorithms that can serve as a basis for selecting and further advancing QoS routing in SDN networks is missing in the literature. This makes it difficult to select the most appropriate QoS routing algorithm for a particular use case, e.g., for SDN controlled industrial communications. We close this gap in the literature by conducting a comprehensive up-to-date survey of centralized QoS routing algorithms. We introduce a novel four-dimensional (4D) evaluation framework for QoS routing algorithms, whereby the 4D correspond to the type of topology, two forms of scalability of a topology, and the tightness of the delay constraint. We implemented 26 selected DCLC algorithms and compared their runtime and cost inefficiency within the 4D evaluation framework. While the main conclusion of this evaluation is that the best algorithm depends on the specific sub-space of the 4D space that is targeted, we identify two algorithms, namely Lagrange relaxation-based aggregated cost (LARAC) and search space reduction delay-cost-constrained routing (SSR+DCCR), that perform very well in most of the 4D evaluation space.

126 citations


Network Information
Related Topics (5)
Network packet
159.7K papers, 2.2M citations
95% related
Wireless network
122.5K papers, 2.1M citations
93% related
Wireless ad hoc network
49K papers, 1.1M citations
93% related
Wireless sensor network
142K papers, 2.4M citations
93% related
Server
79.5K papers, 1.4M citations
92% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202391
2022209
202130
202035
201962
2018132