scispace - formally typeset
Search or ask a question
Topic

Static routing

About: Static routing is a research topic. Over the lifetime, 25733 publications have been published within this topic receiving 576732 citations.


Papers
More filters
Patent
24 Aug 2001
TL;DR: In this article, a mobile routing device communicates over multiple wireless networks with a Host Network Server residing on a Local Area Network (LAN) to send and receive data from the wireless network.
Abstract: A mobile routing device communicates over multiple wireless networks with a Host Network Server residing on a Local Area Network. The mobile routing device also communicates with at least one client device. The mobile routing device includes multiple router network adapters, each interfacing with one of the wireless networks to send and receive data from the wireless network. Each router network adapter having a gateway address, associated with the wireless network, that the Host Network Server uses to send data to the mobile routing device. The mobile routing device also includes at least one client router network adapter that interfaces with at least one client device. Each client router network adapter is associated with an end point address that each Host Application uses to send data to the client device. Data is sent to the client device via the Host Network Server, via at least one of the wireless networks, and via the mobile routing device, using only the end point address. Consequently, a data sender is unaware of the wireless networks used to transport the data and the corresponding gateway addresses.

123 citations

Journal ArticleDOI
TL;DR: A geographical routing algorithm called location-aware routing for delay-tolerant networks (LAROD), enhanced with a location service, location dissemination service (LoDiS), which together are shown to suit an intermittently connected MANET (IC-MANET).
Abstract: Combining mobile platforms such as manned or unmanned vehicles and peer-assisted wireless communication is an enabler for a vast number of applications. A key enabler for the applications is the routing protocol that directs the packets in the network. Routing packets in fully connected mobile ad hoc networks (MANETs) has been studied to a great extent, but the assumption on full connectivity is generally not valid in a real system. This case means that a practical routing protocol must handle intermittent connectivity and the absence of end-to-end connections. In this paper, we propose a geographical routing algorithm called location-aware routing for delay-tolerant networks (LAROD), enhanced with a location service, location dissemination service (LoDiS), which together are shown to suit an intermittently connected MANET (IC-MANET). Because location dissemination takes time in IC-MANETs, LAROD is designed to route packets with only partial knowledge of geographic position. To achieve low overhead, LAROD uses a beaconless strategy combined with a position-based resolution of bids when forwarding packets. LoDiS maintains a local database of node locations, which is updated using broadcast gossip combined with routing overhearing. The algorithms are evaluated under a realistic application, i.e., unmanned aerial vehicles deployed in a reconnaissance scenario, using the low-level packet simulator ns-2. The novelty of this paper is the illustration of sound design choices in a realistic application, with holistic choices in routing, location management, and the mobility model. This holistic approach justifies that the choice of maintaining a local database of node locations is both essential and feasible. The LAROD-LoDiS scheme is compared with a leading delay-tolerant routing algorithm (spray and wait) and is shown to have a competitive edge, both in terms of delivery ratio and overhead. For spray and wait, this case involved a new packet-level implementation in ns-2 as opposed to the original connection-level custom simulator.

123 citations

Proceedings ArticleDOI
19 Apr 2009
TL;DR: This paper presents a new routing paradigm that generalizes opportunistic routing in wireless mesh networks by introducing a polynomial-time algorithm and provides the proof of its optimality.
Abstract: In this paper, we present a new routing paradigm that generalizes opportunistic routing in wireless mesh networks. In multirate anypath routing, each node uses both a set of next hops and a selected transmission rate to reach a destination. Using this rate, a packet is broadcast to the nodes in the set and one of them forwards the packet on to the destination. To date, there is no theory capable of jointly optimizing both the set of next hops and the transmission rate used by each node. We bridge this gap by introducing a polynomial-time algorithm to this problem and provide the proof of its optimality. The proposed algorithm runs in the same running time as regular shortest-path algorithms and is therefore suitable for deployment in link-state routing protocols. We conducted experiments in a 802.11b testbed network, and our results show that multirate anypath routing performs on average 80% and up to 6.4 times better than anypath routing with a fixed rate of 11 Mbps. If the rate is fixed at 1 Mbps instead, performance improves by up to one order of magnitude. I. INTRODUCTION The high loss rate and dynamic quality of links make routing in wireless mesh networks extremely challenging (1). Anypath routing 1 has been recently proposed as a way to circumvent these shortcomings by using multiple next hops for each destination (3)-(6). Each packet is broadcast to a forwarding set composed of several neighbors, and the packet must be retransmitted only if none of the neighbors in the set receive it. Therefore, while the link to a given neighbor is down or performing poorly, another nearby neighbor may receive the packet and forward it on. This is in contrast to single-path routing where only one neighbor is assigned as the next hop for each destination. In this case, if the link to this neighbor is not performing well, a packet may be lost even though other neighbors may have overheard it. Existing work on anypath routing has focused on wireless networks that use a single transmission rate. This approach, albeit straightforward, presents two major drawbacks. First, using a single rate over the entire network underutilizes available bandwidth resources. Some links may perform well at a higher rate, while others may only work at a lower rate. Secondly and most importantly, the network may become disconnected at a higher bit rate. We provide experimental measurements from a 802.11b testbed which show that this phenomenon is not uncommon in practice. The key problem is that higher transmission rates have a shorter radio range, which reduces network density and connectivity. As the bit rate in- creases, links becomes lossier and the network eventually gets disconnected. Therefore, in order to guarantee connectivity, single-rate anypath routing must be limited to low rates. In multirate anypath routing, these problems do not exist; however, we face different challenges. First, we must find 1 We use the term anypath rather than opportunistic routing, since oppor- tunistic routing is an overloaded term also used for opportunistic contacts (2).

123 citations

Journal ArticleDOI
TL;DR: This paper shows that the minimum energy routing schemes in the literature could fail without considering the routing overhead involved and node mobility, and proposes a more accurate analytical model to track the energy consumptions due to various factors and a simple energy-efficient routing scheme PEER to improve the performance during path discovery and in mobility scenarios.
Abstract: Many minimum energy (energy-efficient) routing protocols have been proposed in recent years. However, very limited effort has been made in studying routing overhead, route setup time, and route maintenance issues associated with these protocols. Without a careful design, an energy-efficient routing protocol can perform much worse than a normal routing protocol. In this paper, we first show that the minimum energy routing schemes in the literature could fail without considering the routing overhead involved and node mobility. We then propose a more accurate analytical model to track the energy consumptions due to various factors, and a simple energy-efficient routing scheme PEER to improve the performance during path discovery and in mobility scenarios. Our simulation results indicate that compared to a conventional energy-efficient routing protocol, PEER protocol can reduce up to 2/3 path discovery overhead and delay, and 50 percent transmission energy consumption.

123 citations

Journal ArticleDOI
01 Apr 2016
TL;DR: An Improved Harmony Search Based Energy Efficient Routing Algorithm for WSNs is proposed, which is based on harmony search (HS) algorithm (a meta-heuristic) and an objective function model that considers both the energy consumption and the length of path is developed.
Abstract: Graphical abstractDisplay Omitted HighlightsA new encoding of harmony memory for routing in WSNs has been proposed.A new generation method of a new harmony for routing in WSNs has been proposed.The dynamic adaptation is introduced for the parameter HMCR to improve the performance of the proposed routing algorithm.An effective local search strategy is proposed to improve the convergence speed and the accuracy of the proposed routing algorithm.An energy efficient objective function model is proposed. Wireless sensor networks (WSNs) is one of the most important technologies in this century. As sensor nodes have limited energy resources, designing energy-efficient routing algorithms for WSNs has become the research focus. And because WSNs routing for maximizing the network lifetime is a NP-hard problem, many researchers try to optimize it with meta-heuristics. However, due to the uncertain variable number and strong constraints of WSNs routing problem, most meta-heuristics are inappropriate in designing routing algorithms for WSNs. This paper proposes an Improved Harmony Search Based Energy Efficient Routing Algorithm (IHSBEER) for WSNs, which is based on harmony search (HS) algorithm (a meta-heuristic). To address the WSNs routing problem with HS algorithm, several key improvements have been put forward: First of all, the encoding of harmony memory has been improved based on the characteristics of routing in WSNs. Secondly, the improvisation of a new harmony has also been improved. We have introduced dynamic adaptation for the parameter HMCR to avoid the prematurity in early generations and strengthen its local search ability in late generations. Meanwhile, the adjustment process of HS algorithm has been discarded to make the proposed routing algorithm containing less parameters. Thirdly, an effective local search strategy is proposed to enhance the local search ability, so as to improve the convergence speed and the accuracy of routing algorithm. In addition, an objective function model that considers both the energy consumption and the length of path is developed. The detailed descriptions and performance test results of the proposed approach are included. The experimental results clearly show the advantages of the proposed routing algorithm for WSNs.

123 citations


Network Information
Related Topics (5)
Network packet
159.7K papers, 2.2M citations
95% related
Wireless network
122.5K papers, 2.1M citations
93% related
Wireless ad hoc network
49K papers, 1.1M citations
93% related
Wireless sensor network
142K papers, 2.4M citations
93% related
Server
79.5K papers, 1.4M citations
92% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202391
2022209
202130
202035
201962
2018132