scispace - formally typeset
Search or ask a question
Topic

Static routing

About: Static routing is a research topic. Over the lifetime, 25733 publications have been published within this topic receiving 576732 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Simulation results show improved performance of the proposed protocols in comparison to the selected existing ones in terms of the chosen performance metrics.

106 citations

Patent
14 Jul 1976
TL;DR: In this article, the authors propose a method of building-up a routing address consisting of routing words associated with the switching nodes and via which the transmission of information packets is effected in accordance with the routing address contained in each packet, and for their storage in the region of a called subscriber.
Abstract: In a digital telecommunication network containing bearer channels between switching nodes, the method of building-up a routing address consisting of routing words that are associated with the switching nodes and via which the transmission of information packets is effected in accordance with the routing address contained in each packet, and for their storage in the region of a called subscriber, dispatching a build-up packet from the first calling subscriber which contains the location-independent call number of the called second subscriber, each switching node retransmitting to other switching nodes connected to it at least the first of several successively received build-up packets having the same call number and whose routing address does not exceed a specific length and adding to each build-up packet retransmitted a routing word associated with the bearer channel connected to it and forming a part of the travel path of the build-up packet, the called subscriber designated by the call number or the switching node connected directly to the called subscriber receiving at least one build-up packet intended for it and storing ar least one of the routing addresses built-up by the build-up packet received.

106 citations

Book ChapterDOI
06 Jun 2001
TL;DR: In this paper, the authors propose a hybrid approach that uses both globally exchanged link state metrics and locally collected path state metrics for proportioning traffic among the selected paths, and compare the performance of their approach with that of global optimal proportioning and show that the proposed approach yields near-optimal performance using only a few paths.
Abstract: Multipath routing schemes distribute traffic among multiple paths instead of routing all the traffic along a single path. Two key questions that arise in multipath routing are how many paths are needed and how to select these paths. Clearly, the number and the quality of the paths selected dictate the performance of a multipath routing scheme. We address these issues in the context of the proportional routing paradigm where the traffic is proportioned among a few "good" paths instead of routing it all along the "best" path. We propose a hybrid approach that uses both globally exchanged link state metrics -- to identify a set of good paths, and locally collected path state metrics -- for proportioning traffic among the selected paths. We compare the performance of our approach with that of global optimal proportioning and show that the proposed approach yields near-optimal performance using only a few paths. We also demonstrate that the proposed scheme yields much higher throughput with much smaller overhead compared to other schemes based on link state updates.

106 citations

Proceedings ArticleDOI
12 Jun 2007
TL;DR: This paper examines BGP routing data from all routers in the Abilene backbone for six months and correlates them with a catalog of all known disruptions to its nodes and links, and proposes using network-wide analysis of routing information to diagnose and detect network disruptions.
Abstract: To maintain high availability in the face of changing network conditions, network operators must quickly detect, identify, and react to events that cause network disruptions. One way to accomplish this goal is to monitor routing dynamics, by analyzing routing update streams collected from routers. Existing monitoring approaches typically treat streams of routing updates from different routers as independent signals, and report only the "loud" events (i.e., events that involve large volume of routing messages). In this paper, we examine BGP routing data from all routers in the Abilene backbone for six months and correlate them with a catalog of all known disruptions to its nodes and links. We find that many important events are not loud enough to be detected from a single stream. Instead, they become detectable only when multiple BGP update streams are simultaneously examined. This is because routing updates exhibit network-wide dependencies.This paper proposes using network-wide analysis of routing information to diagnose (i.e., detect and identify) network disruptions. To detect network disruptions, we apply a multivariate analysis technique on dynamic routing information, (i.e., update traffic from all the Abilene routers) and find that this technique can detect every reported disruption to nodes and links within the network with a low rate of false alarms. To identify the type of disruption, we jointly analyze both the network-wide static configuration and details in the dynamic routing updates; we find that our method can correctly explain the scenario that caused the disruption. Although much work remains to make network-wide analysis of routing data operationally practical, our results illustrate the importance and potential of such an approach.

106 citations

Journal ArticleDOI
TL;DR: The routing capacity of a network is defined to be the supremum of all possible fractional message throughputs achievable by routing, and it is proved that every rational number in (0, 1] is the routingcapacity of some solvable network.
Abstract: We define the routing capacity of a network to be the supremum of all possible fractional message throughputs achievable by routing. We prove that the routing capacity of every network is achievable and rational, we present an algorithm for its computation, and we prove that every rational number in (0, 1] is the routing capacity of some solvable network. We also determine the routing capacity for various example networks. Finally, we discuss the extension of routing capacity to fractional coding solutions and show that the coding capacity of a network is independent of the alphabet used

106 citations


Network Information
Related Topics (5)
Network packet
159.7K papers, 2.2M citations
95% related
Wireless network
122.5K papers, 2.1M citations
93% related
Wireless ad hoc network
49K papers, 1.1M citations
93% related
Wireless sensor network
142K papers, 2.4M citations
93% related
Server
79.5K papers, 1.4M citations
92% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202391
2022209
202130
202035
201962
2018132