scispace - formally typeset
Search or ask a question
Topic

Static routing

About: Static routing is a research topic. Over the lifetime, 25733 publications have been published within this topic receiving 576732 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The main idea of the 2ACK scheme is to send two-hop acknowledgment packets in the opposite direction of the routing path in order to reduce additional routing overhead.
Abstract: We study routing misbehavior in MANETs (mobile ad hoc networks) in this paper. In general, routing protocols for MANETs are designed based on the assumption that all participating nodes are fully cooperative. However, due to the open structure and scarcely available battery-based energy, node misbehaviors may exist. One such routing misbehavior is that some selfish nodes will participate in the route discovery and maintenance processes but refuse to forward data packets. In this paper, we propose the 2ACK scheme that serves as an add-on technique for routing schemes to detect routing misbehavior and to mitigate their adverse effect. The main idea of the 2ACK scheme is to send two-hop acknowledgment packets in the opposite direction of the routing path. In order to reduce additional routing overhead, only a fraction of the received data packets are acknowledged in the 2ACK scheme. Analytical and simulation results are presented to evaluate the performance of the proposed scheme

485 citations

Journal ArticleDOI
TL;DR: A network flow model for identifying optimal lane-based evacuation routing plans in a complex road network is presented, an integer extension of the minimum-cost flow problem that can be used to generate routing plans that trade total vehicle travel-distance against merging, while preventing traffic crossing-conflicts at intersections.
Abstract: Most traffic delays in regional evacuations occur at intersections. Lane-based routing is one strategy for reducing these delays. This paper presents a network flow model for identifying optimal lane-based evacuation routing plans in a complex road network. The model is an integer extension of the minimum-cost flow problem. It can be used to generate routing plans that trade total vehicle travel-distance against merging, while preventing traffic crossing-conflicts at intersections. A mixed-integer programming solver is used to derive optimal routing plans for a sample network. Manual capacity analysis and microscopic traffic simulation are used to compare the relative efficiency of the plans. An application is presented for Salt Lake City, Utah.

483 citations

Journal ArticleDOI
J. Strand1, A.L. Chiu, R. Tkach
TL;DR: It is concluded that if emerging optical technology is to be maximally exploited, heterogeneous technologies with dissimilar routing constraints are likely and four alternative architectures for dealing with this eventuality are identified.
Abstract: Optical layer control planes based on MPLS and other Internet protocols hold great promise because of their proven scalability, ability to support rapid provisioning, and auto discovery and self-inventory capabilities and are under intense study in various standards bodies. To date however little attention has been paid to aspects of the optical layer which differ from those found in data networking. We study three such aspects which impact routing: network elements which are reconfigurable, but in constrained ways; transmission impairments which may make some routes unusable; and diversity. We conclude that if emerging optical technology is to be maximally exploited, heterogeneous technologies with dissimilar routing constraints are likely. Four alternative architectures for dealing with this eventuality are identified and some trade-offs between centralizing or distributing some aspects of routing are discussed.

481 citations

Proceedings ArticleDOI
04 Oct 2004
TL;DR: The champion algorithm turns out to be one that combines the simplicity of a simple random policy, which is efficient in finding good leads towards the destination, with the sophistication of utility-based policies that efficiently follow good leads.
Abstract: Intermittently connected mobile networks are wireless networks where most of the time there does not exist a complete path from source to destination, or such a path is highly unstable and may break soon after it has been discovered. In this context, conventional routing schemes would fail. To deal with such networks we propose the use of an opportunistic hop-by-hop routing model. According to the model, a series of independent, local forwarding decisions are made, based on current connectivity and predictions of future connectivity information diffused through nodes' mobility. The important issue here is how to choose an appropriate next hop. To this end, we propose and analyze via theory and simulations a number of routing algorithms. The champion algorithm turns out to be one that combines the simplicity of a simple random policy, which is efficient in finding good leads towards the destination, with the sophistication of utility-based policies that efficiently follow good leads. We also state and analyze the performance of an oracle-based optimal algorithm, and compare it to the online approaches. The metrics used in the comparison are the average message delivery delay and the number of transmissions per message delivered.

480 citations

Proceedings ArticleDOI
07 Jun 1998
TL;DR: A new scheme especially designed for routing in an ad-hoc wireless environments, called "global state routing" (GSR), where nodes exchange vectors of link states among their neighbors during routing information exchange, which provides a better solution than existing approaches in a truly mobile, ad-Hoc environment.
Abstract: In an ad-hoc environment with no wired communication infrastructure, it is necessary that mobile hosts operate as routers in order to maintain the information about connectivity. However with the presence of high mobility and low signal/interference ratio (SIR), traditional routing schemes for wired networks are not appropriate, as they either lack the ability to quickly reflect the changing topology, or may cause excessive overhead, which degrades network performance. Considering these restrictions, we propose a new scheme especially designed for routing in an ad-hoc wireless environments. We call this scheme "global state routing" (GSR), where nodes exchange vectors of link states among their neighbors during routing information exchange. Based on the link state vectors, nodes maintain a global knowledge of the network topology and optimize their routing decisions locally. The performance of the algorithm, studied in this paper through a series of simulations, reveals that this scheme provides a better solution than existing approaches in a truly mobile, ad-hoc environment.

478 citations


Network Information
Related Topics (5)
Network packet
159.7K papers, 2.2M citations
95% related
Wireless network
122.5K papers, 2.1M citations
93% related
Wireless ad hoc network
49K papers, 1.1M citations
93% related
Wireless sensor network
142K papers, 2.4M citations
93% related
Server
79.5K papers, 1.4M citations
92% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202391
2022209
202130
202035
201962
2018132