scispace - formally typeset
Search or ask a question
Topic

Static routing

About: Static routing is a research topic. Over the lifetime, 25733 publications have been published within this topic receiving 576732 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: This two-phase architecture makes it possible to search the solution space efficiently, thus producing good solutions without excessive computation, and shows that the TS algorithm achieves significant improvement over a recent effective LRP heuristic.

363 citations

Proceedings ArticleDOI
22 May 2017
TL;DR: This paper presents the first taxonomy of routing attacks and their impact on Bitcoin, considering both small-scale attacks, targeting individual nodes, and large-scale attack, targeting the network as a whole, and demonstrates the feasibility of each attack against the deployed Bitcoin software.
Abstract: As the most successful cryptocurrency to date, Bitcoin constitutes a target of choice for attackers. While many attack vectors have already been uncovered, one important vector has been left out though: attacking the currency via the Internet routing infrastructure itself. Indeed, by manipulating routing advertisements (BGP hijacks) or by naturally intercepting traffic, Autonomous Systems (ASes) can intercept and manipulate a large fraction of Bitcoin traffic.This paper presents the first taxonomy of routing attacks and their impact on Bitcoin, considering both small-scale attacks, targeting individual nodes, and large-scale attacks, targeting the network as a whole. While challenging, we show that two key properties make routing attacks practical: (i) the efficiency of routing manipulation; and (ii) the significant centralization of Bitcoin in terms of mining and routing. Specifically, we find that any network attacker can hijack few (<100) BGP prefixes to isolate ∼50% of the mining power—even when considering that mining pools are heavily multi-homed. We also show that on-path network attackers can considerably slow down block propagation by interfering with few key Bitcoin messages.We demonstrate the feasibility of each attack against the deployed Bitcoin software. We also quantify their effectiveness on the current Bitcoin topology using data collected from a Bitcoin supernode combined with BGP routing data. The potential damage to Bitcoin is worrying. By isolating parts of the network or delaying block propagation, attackers can cause a significant amount of mining power to be wasted, leading to revenue losses and enabling a wide range of exploits such as double spending. To prevent such effects in practice, we provide both short and long-term countermeasures, some of which can be deployed immediately.

362 citations

Proceedings ArticleDOI
09 Jul 2003
TL;DR: A theoretical framework is considered and a routing algorithm is proposed which exploits the patterns in the mobility of nodes to provide guarantees on the delay and the throughput achieved by the algorithm is only a poly-logarithmic factor off from the optimal.
Abstract: Network throughput and packet delay are two important parameters in the design and the evaluation of routing protocols for ad-hoc networks. While mobility has been shown to increase the capacity of a network, it is not clear whether the delay can be kept low without trading off the throughput. We consider a theoretical framework and propose a routing algorithm which exploits the patterns in the mobility of nodes to provide guarantees on the delay. Moreover, the throughput achieved by the algorithm is only a poly-logarithmic factor off from the optimal. The algorithm itself is fairly simple. In order to analyze its feasibility and the performance guarantee, we used various techniques of probabilistic analysis of algorithms. The approach taken in this paper could be applied to the analyses of some other routing algorithms for mobile ad hoc networks proposed in the literature.

361 citations

Proceedings ArticleDOI
31 Oct 1999
TL;DR: Simulation results show that STAR is an order of magnitude more efficient than any topology-broadcast protocol, and four times moreefficient than ALP, which was the most efficient table-driven routing protocol based on partial link-state information reported to date.
Abstract: We present the source-tree adaptive routing (STAR) protocol and analyze its performance in wireless networks with broadcast radio links. Routers in STAR communicate to the neighbors their source routing trees either incrementally or in atomic updates. Source routing trees are specified by stating the link parameters of each link belonging to the paths used to reach every destination. Hence, a router disseminates link-state updates to its neighbors for only those links along paths used to reach destinations. Simulation results show that STAR is an order of magnitude more efficient than any topology-broadcast protocol, and four times more efficient than ALP, which was the most efficient table-driven routing protocol based on partial link-state information reported to date. The results also show that STAR is even more efficient than the dynamic source routing (DSR) protocol, which has been shown to be one of the best performing on-demand routing protocols.

360 citations

Journal ArticleDOI
TL;DR: Analytical results and simulation experiments indicate that BLR provides efficient and robust routing in highly dynamic mobile ad hoc networks.

359 citations


Network Information
Related Topics (5)
Network packet
159.7K papers, 2.2M citations
95% related
Wireless network
122.5K papers, 2.1M citations
93% related
Wireless ad hoc network
49K papers, 1.1M citations
93% related
Wireless sensor network
142K papers, 2.4M citations
93% related
Server
79.5K papers, 1.4M citations
92% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202391
2022209
202130
202035
201962
2018132