scispace - formally typeset
Search or ask a question
Topic

Static routing

About: Static routing is a research topic. Over the lifetime, 25733 publications have been published within this topic receiving 576732 citations.


Papers
More filters
Journal ArticleDOI
01 Jun 1977-Networks
TL;DR: This work considers heuristic algorithms for vehicle routing, comparing techniques of Clarke and Wright, Gillett and Miller, and Tyagi, and presenting modifications and extensions which permit problems involving hundreds of demand points to be solved in a matter of seconds.
Abstract: Heuristic programming algorithms frequently address large problems and require manipulation and operation on massive data sets. The algorithms can be improved by using efficient data structures. With this in mind, we consider heuristic algorithms for vehicle routing, comparing techniques of Clarke and Wright, Gillett and Miller, and Tyagi, and presenting modifications and extensions which permit problems involving hundreds of demand points to be solved in a matter of seconds. In addition, a multi-depot routing algorithm is developed. The results are illustrated with a routing study for an urban newspaper with an evening circulation exceeding 100,000.

341 citations

Proceedings ArticleDOI
24 Jul 2006
TL;DR: Analytical models based on queuing theory are developed for DyXY routing for a two-dimensional mesh NoC architecture, and analytical results match very well with the simulation results.
Abstract: A novel routing algorithm, namely dynamic XY (DyXY) routing, is proposed for NoCs to provide adaptive routing and ensure deadlock-free and livelock-free routing at the same time.A new router architecture is developed to support the routing algorithm.Analytical models based on queuing theory are developed for DyXY routing for a two-dimensional mesh NoC architecture,and analytical results match very well with the simulation results.It is observed that DyXY routing can achieve better performance compared with static XY routing and odd-even routing.

340 citations

01 Jan 1996
TL;DR: The interconnection network used in the Cray T3E multiprocessor is a bidirectional 3D torus with fully adaptive routing, optimized virtual channel assignments, integrated barrier synchronization support and considerable fault tolerance.
Abstract: This paper describes the interconnection network used in the Cray T3E multiprocessor. The network is a bidirectional 3D torus with fully adaptive routing, optimized virtual channel assignments, integrated barrier synchronization support and considerable fault tolerance. The routers are built with LSI’s 500K ASIC technology with custom transmitters/ receivers driving low-voltage differential signals at 375 MHz, for a link data payload capacity of approximately 500 MB/s.

339 citations

Journal ArticleDOI
TL;DR: This paper proposes a necessary and sufficient condition for deadlock-free adaptive routing, the key for the design of fully adaptive routing algorithms with minimum restrictions, and shows the application of the new theory.
Abstract: Deadlock avoidance is a key issue in wormhole networks. A first approach by W.J. Dally and C.L. Seitz (1987) consists of removing the cyclic dependencies between channels. Many deterministic and adaptive routing algorithms have been proposed based on that approach. Although the absence of cyclic dependencies is a necessary and sufficient condition for deadlock-free deterministic routing, it is only a sufficient condition for deadlock-free adaptive routing. A more powerful approach by J. Duato (1991) only requires the absence of cyclic dependencies on a connected channel subset. The remaining channels can be used in almost any way. In this paper, we show that the previously mentioned approach is also a sufficient condition. Moreover, we propose a necessary and sufficient condition for deadlock-free adaptive routing. This condition is the key for the design of fully adaptive routing algorithms with minimum restrictions, An example shows the application of the new theory. >

338 citations

Proceedings ArticleDOI
23 Apr 2006
TL;DR: It is shown that routing based on MobySpace can achieve good performance compared to that of a number of standard algorithms, especially for nodes that are present in the network a large portion of the time, and the degree of homogeneity of node mobility patterns has a high impact on routing.
Abstract: Because a delay tolerant network (DTN) can often be partitioned, routing is a challenge. However, routing benefits considerably if one can take advantage of knowledge concerning node mobility. This paper addresses this problem with a generic algorithm based on the use of a high-dimensional Euclidean space, that we call MobySpace, constructed upon nodes' mobility patterns. We provide here an analysis and a large scale evaluation of this routing scheme in the context of ambient networking by replaying real mobility traces. The specific MobySpace evaluated is based on the frequency of visits of nodes to each possible location. We show that routing based on MobySpace can achieve good performance compared to that of a number of standard algorithms, especially for nodes that are present in the network a large portion of the time. We determine that the degree of homogeneity of node mobility patterns has a high impact on routing. And finally, we study the ability of nodes to learn their own mobility patterns.

337 citations


Network Information
Related Topics (5)
Network packet
159.7K papers, 2.2M citations
95% related
Wireless network
122.5K papers, 2.1M citations
93% related
Wireless ad hoc network
49K papers, 1.1M citations
93% related
Wireless sensor network
142K papers, 2.4M citations
93% related
Server
79.5K papers, 1.4M citations
92% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202391
2022209
202130
202035
201962
2018132