scispace - formally typeset
Search or ask a question
Topic

Static routing

About: Static routing is a research topic. Over the lifetime, 25733 publications have been published within this topic receiving 576732 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: A non-classic algebraic theory is developed for investigating the convergence properties of dynamic routing protocols and shows that routing protocols can be made to converge to shortest and widest paths, but that the composite metric of Internet Gateway Routing Protocol (IGRP) does not lead to optimal paths.
Abstract: We develop a non-classic algebraic theory for the purpose of investigating the convergence properties of dynamic routing protocols. The algebraic theory can be regarded as a generalization of shortest-path routing, where the new concept of free cycle generalizes that of a positive-length cycle. A primary result then states that routing protocols always converge, though not necessarily onto optimal paths, in networks where all cycles are free. Monotonicity and isotonicity are two algebraic properties that strengthen convergence results. Monotonicity implies protocol convergence in every network, and isotonicity assures convergence onto optimal paths. A great many applications arise as particular instances of the algebraic theory. In intra-domain routing, we show that routing protocols can be made to converge to shortest and widest paths, for example, but that the composite metric of Internet Gateway Routing Protocol (IGRP) does not lead to optimal paths. The more interesting applications, however, relate to inter-domain routing and its Border Gateway Protocol (BGP), where the algebraic framework provides a mathematical template for the specification, design, and verification of routing policies. We formulate existing guidelines for inter-domain routing in algebraic terms, propose new guidelines contemplating backup relationships between domains, and derive a sufficient condition for signaling correctness of internal-BGP.

183 citations

Proceedings ArticleDOI
04 Jun 2011
TL;DR: This work designs a novel low-cost congestion propagation network that leverages both local and non-local network information for more accurate congestion estimates and offers effective adaptivity for congestion beyond neighboring nodes, and proposes Destination-Based Adaptive Routing (DBAR).
Abstract: With the emergence of many-core architectures, it is quite likely that multiple applications will run concurrently on a system. Existing locally and globally adaptive routing algorithms largely overlook issues associated with workload consolidation. The shortsightedness of locally adaptive routing algorithms limits performance due to poor network congestion avoidance. Globally adaptive routing algorithms attack this issue by introducing a congestion propagation network to obtain network status information beyond neighboring nodes. However, they may suffer from intra- and inter-application interference during output port selection for consolidated workloads, coupling the behavior of otherwise independent applications and negatively affecting performance. To address these two issues, we propose Destination-Based Adaptive Routing (DBAR). We design a novel low-cost congestion propagation network that leverages both local and non-local network information for more accurate congestion estimates. Thus, DBAR offers effective adaptivity for congestion beyond neighboring nodes. More importantly, by integrating the destination into the selection function, DBAR mitigates intra- and inter-application interference and offers dynamic isolation among regions. Experimental results show that DBAR can offer better performance than the best baseline algorithm for all measured configurations; it is well suited for workload consolidation. The wiring overhead of DBAR is low and DBAR provides improvement in the energy-delay product for medium and high injection rates.

183 citations

Patent
06 Jun 2002
TL;DR: In this paper, the TCP connection data statistics are collected as connections are established between requesting clients and the CDN region and requests are serviced by those edge servers, which are then used by the request routing mechanism in subsequent routing decisions and in particular in the map generation processes.
Abstract: A routing method operative in a content delivery network (CDN) where the CDN includes a request routing mechanism for routing clients to subsets of edge servers within the CDN. According to the routing method, TCP connection data statistics are collected are edge servers located within a CDN region. The TCP connection data statistics are collected as connections are established between requesting clients and the CDN region and requests are serviced by those edge servers. Periodically, e.g., daily, the connection data statistics are provdied from the edge servers in a region back to the request routing mechanism. The TCP connection data statistics are then used by the request routing mechanism in subsequent routing decisions and, in particular, in the map generation processes. Thus, for example, the TCP connection data may be used to determine whether a given quality of service is being obtained by routing requesting clients to the CDN region. If not, the request routing mechanism generates a map that directs requesting clients away from the CDN region for a given time period or until the quality of service improves.

183 citations

Proceedings ArticleDOI
Nicholas F. Maxemchuk1
23 Apr 1989
TL;DR: The Manhattan Street Network (MS-Net) and Shuffle-exchange network (SX-net) as discussed by the authors are two-connected networks with significantly different topologies, and both of these networks are suitable for deflection routing.
Abstract: The Manhattan Street Network (MS-Net) and Shuffle-Exchange Network (SX-Net) are two-connected networks with significantly different topologies. Fixed-size packets are transmitted between nodes in these networks. The nodes are synchronized so that all of the packets that are received by a node within a slot transmission time arrive at a switching point simultaneously. Instead of storing large numbers of packets at intermediate nodes, a deflection strategy similar to hot-potato routing is used. There are characteristics of the MS-Net that make it well suited for deflection routing. With no buffer, 55-70% of the throughput with an infinite number of buffers has been obtained; with a single buffer per node, the throughput increases to 80-90%. With uniform load the throughput does not decrease significantly as the network utilization increases. Therefore, additional flow control mechanisms are not required to achieve the highest network throughput. The SX-Net does not have the above characteristics of the MS-Net. However, deflection routing still provides a significant portion of the available throughput. In the SX-Net, more buffers are required than in the MS-Net, and a flow control mechanism must be used to achieve the greatest throughput. >

183 citations

Proceedings ArticleDOI
01 Jan 2001
TL;DR: This paper presents a general model for backup routing that increases network reliability while allowing each AS to apply local routing policies that are consistent with the commercial relationships it has with its neighbors, and proposes a new BGP attribute that conveys the avoidance level of a route.
Abstract: The Internet consists of a large number of autonomous systems (ASes) that exchange routing information using the border gateway protocol (BGP). Each AS applies local policies for selecting routes and propagating routes to others, with important implications for the reliability and stability of the global system. In and of itself, BGP does not ensure that every pair of hosts can communicate. In addition, routing policies are not guaranteed be safe, and may cause protocol divergence. Backup routing is often used to increase the reliability of the network under link and router failures, at the possible expense of safety. This paper presents a general model for backup routing that increases network reliability while allowing each AS to apply local routing policies that are consistent with the commercial relationships it has with its neighbors. In addition, our model is inherently safe in the sense that the global system remains safe under any combination of link and router failures. Our model and the proof of inherent safety are cast in terms of the stable paths problem, a static formalism that captures the semantics of interdomain routing policies. Then, we describe how to realize our model in BGP with locally-implementable routing policies. To simplify the specification of local policies, we propose a new BGP attribute that conveys the avoidance level of a route. We also describe how to realize these policies without modification to BGP by using the BGP community attribute.

183 citations


Network Information
Related Topics (5)
Network packet
159.7K papers, 2.2M citations
95% related
Wireless network
122.5K papers, 2.1M citations
93% related
Wireless ad hoc network
49K papers, 1.1M citations
93% related
Wireless sensor network
142K papers, 2.4M citations
93% related
Server
79.5K papers, 1.4M citations
92% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202391
2022209
202130
202035
201962
2018132