Search or ask a question
Topic

# Statistical model

About: Statistical model is a research topic. Over the lifetime, 19987 publications have been published within this topic receiving 904164 citations. The topic is also known as: Models, Statistical & statistical model.

##### Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a new estimate minimum information theoretical criterion estimate (MAICE) is introduced for the purpose of statistical identification, which is free from the ambiguities inherent in the application of conventional hypothesis testing procedure.
Abstract: The history of the development of statistical hypothesis testing in time series analysis is reviewed briefly and it is pointed out that the hypothesis testing procedure is not adequately defined as the procedure for statistical model identification. The classical maximum likelihood estimation procedure is reviewed and a new estimate minimum information theoretical criterion (AIC) estimate (MAICE) which is designed for the purpose of statistical identification is introduced. When there are several competing models the MAICE is defined by the model and the maximum likelihood estimates of the parameters which give the minimum of AIC defined by AIC = (-2)log-(maximum likelihood) + 2(number of independently adjusted parameters within the model). MAICE provides a versatile procedure for statistical model identification which is free from the ambiguities inherent in the application of conventional hypothesis testing procedure. The practical utility of MAICE in time series analysis is demonstrated with some numerical examples.

47,133 citations

Book
06 May 2013
TL;DR: In this paper, the authors present a discussion of whether, if, how, and when a moderate mediator can be used to moderate another variable's effect in a conditional process analysis.
Abstract: I. FUNDAMENTAL CONCEPTS 1. Introduction 1.1. A Scientist in Training 1.2. Questions of Whether, If, How, and When 1.3. Conditional Process Analysis 1.4. Correlation, Causality, and Statistical Modeling 1.5. Statistical Software 1.6. Overview of this Book 1.7. Chapter Summary 2. Simple Linear Regression 2.1. Correlation and Prediction 2.2. The Simple Linear Regression Equation 2.3. Statistical Inference 2.4. Assumptions for Interpretation and Statistical Inference 2.5. Chapter Summary 3. Multiple Linear Regression 3.1. The Multiple Linear Regression Equation 3.2. Partial Association and Statistical Control 3.3. Statistical Inference in Multiple Regression 3.4. Statistical and Conceptual Diagrams 3.5. Chapter Summary II. MEDIATION ANALYSIS 4. The Simple Mediation Model 4.1. The Simple Mediation Model 4.2. Estimation of the Direct, Indirect, and Total Effects of X 4.3. Example with Dichotomous X: The Influence of Presumed Media Influence 4.4. Statistical Inference 4.5. An Example with Continuous X: Economic Stress among Small Business Owners 4.6. Chapter Summary 5. Multiple Mediator Models 5.1. The Parallel Multiple Mediator Model 5.2. Example Using the Presumed Media Influence Study 5.3. Statistical Inference 5.4. The Serial Multiple Mediator Model 5.5. Complementarity and Competition among Mediators 5.6. OLS Regression versus Structural Equation Modeling 5.7. Chapter Summary III. MODERATION ANALYSIS 6. Miscellaneous Topics in Mediation Analysis 6.1. What About Baron and Kenny? 6.2. Confounding and Causal Order 6.3. Effect Size 6.4. Multiple Xs or Ys: Analyze Separately or Simultaneously? 6.5. Reporting a Mediation Analysis 6.6. Chapter Summary 7. Fundamentals of Moderation Analysis 7.1. Conditional and Unconditional Effects 7.2. An Example: Sex Discrimination in the Workplace 7.3. Visualizing Moderation 7.4. Probing an Interaction 7.5. Chapter Summary 8. Extending Moderation Analysis Principles 8.1. Moderation Involving a Dichotomous Moderator 8.2. Interaction between Two Quantitative Variables 8.3. Hierarchical versus Simultaneous Variable Entry 8.4. The Equivalence between Moderated Regression Analysis and a 2 x 2 Factorial Analysis of Variance 8.5. Chapter Summary 9. Miscellaneous Topics in Moderation Analysis 9.1. Truths and Myths about Mean Centering 9.2. The Estimation and Interpretation of Standardized Regression Coefficients in a Moderation Analysis 9.3. Artificial Categorization and Subgroups Analysis 9.4. More Than One Moderator 9.5. Reporting a Moderation Analysis 9.6. Chapter Summary IV. CONDITIONAL PROCESS ANALYSIS 10. Conditional Process Analysis 10.1. Examples of Conditional Process Models in the Literature 10.2. Conditional Direct and Indirect Effects 10.3. Example: Hiding Your Feelings from Your Work Team 10.4. Statistical Inference 10.5. Conditional Process Analysis in PROCESS 10.6. Chapter Summary 11. Further Examples of Conditional Process Analysis 11.1. Revisiting the Sexual Discrimination Study 11.2. Moderation of the Direct and Indirect Effects in a Conditional Process Model 11.3. Visualizing the Direct and Indirect Effects 11.4. Mediated Moderation 11.5. Chapter Summary 12. Miscellaneous Topics in Conditional Process Analysis 12.1. A Strategy for Approaching Your Analysis 12.2. Can a Variable Simultaneously Mediate and Moderate Another Variable's Effect? 12.3. Comparing Conditional Indirect Effects and a Formal Test of Moderated Mediation 12.4. The Pitfalls of Subgroups Analysis 12.5. Writing about Conditional Process Modeling 12.6. Chapter Summary Appendix A. Using PROCESS Appendix B. Monte Carlo Confidence Intervals in SPSS and SAS

26,144 citations

Book
01 Jan 1974
TL;DR: Applied Linear Statistical Models 5e as discussed by the authors is the leading authoritative text and reference on statistical modeling, which includes brief introductory and review material, and then proceeds through regression and modeling for the first half, and through ANOVA and Experimental Design in the second half.
Abstract: Applied Linear Statistical Models 5e is the long established leading authoritative text and reference on statistical modeling. The text includes brief introductory and review material, and then proceeds through regression and modeling for the first half, and through ANOVA and Experimental Design in the second half. All topics are presented in a precise and clear style supported with solved examples, numbered formulae, graphic illustrations, and "Notes" to provide depth and statistical accuracy and precision. The Fifth edition provides an increased use of computing and graphical analysis throughout, without sacrificing concepts or rigor. In general, the 5e uses larger data sets in examples and exercises, and where methods can be automated within software without loss of understanding, it is so done.

10,747 citations

Journal ArticleDOI
TL;DR: This paper describes simultaneous inference procedures in general parametric models, where the experimental questions are specified through a linear combination of elemental model parameters, and extends the canonical theory of multiple comparison procedures in ANOVA models to linear regression problems, generalizedlinear models, linear mixed effects models, the Cox model, robust linear models, etc.
Abstract: Simultaneous inference is a common problem in many areas of application. If multiple null hypotheses are tested simultaneously, the probability of rejecting erroneously at least one of them increases beyond the pre-specified significance level. Simultaneous inference procedures have to be used which adjust for multiplicity and thus control the overall type I error rate. In this paper we describe simultaneous inference procedures in general parametric models, where the experimental questions are specified through a linear combination of elemental model parameters. The framework described here is quite general and extends the canonical theory of multiple comparison procedures in ANOVA models to linear regression problems, generalized linear models, linear mixed effects models, the Cox model, robust linear models, etc. Several examples using a variety of different statistical models illustrate the breadth

10,545 citations

Journal ArticleDOI

10,217 citations

##### Network Information
###### Related Topics (5)
Cluster analysis
146.5K papers, 2.9M citations
85% related
Artificial neural network
207K papers, 4.5M citations
85% related
Estimator
97.3K papers, 2.6M citations
83% related
Support vector machine
73.6K papers, 1.7M citations
83% related
Regression analysis
31K papers, 1.7M citations
83% related
##### Performance
###### Metrics
No. of papers in the topic in previous years
YearPapers
2023122
2022275
2021925
20201,016
20191,043
2018940