scispace - formally typeset
Search or ask a question
Topic

Statistical relational learning

About: Statistical relational learning is a research topic. Over the lifetime, 2276 publications have been published within this topic receiving 65920 citations. The topic is also known as: relational learning & Relational Machine Learning.


Papers
More filters
Journal ArticleDOI
TL;DR: Experiments with a real-world database and knowledge base in a university domain illustrate the promise of this approach to combining first-order logic and probabilistic graphical models in a single representation.
Abstract: We propose a simple approach to combining first-order logic and probabilistic graphical models in a single representation. A Markov logic network (MLN) is a first-order knowledge base with a weight attached to each formula (or clause). Together with a set of constants representing objects in the domain, it specifies a ground Markov network containing one feature for each possible grounding of a first-order formula in the KB, with the corresponding weight. Inference in MLNs is performed by MCMC over the minimal subset of the ground network required for answering the query. Weights are efficiently learned from relational databases by iteratively optimizing a pseudo-likelihood measure. Optionally, additional clauses are learned using inductive logic programming techniques. Experiments with a real-world database and knowledge base in a university domain illustrate the promise of this approach.

2,916 citations

Posted Content
TL;DR: PyTorch Geometric is introduced, a library for deep learning on irregularly structured input data such as graphs, point clouds and manifolds, built upon PyTorch, and a comprehensive comparative study of the implemented methods in homogeneous evaluation scenarios is performed.
Abstract: We introduce PyTorch Geometric, a library for deep learning on irregularly structured input data such as graphs, point clouds and manifolds, built upon PyTorch. In addition to general graph data structures and processing methods, it contains a variety of recently published methods from the domains of relational learning and 3D data processing. PyTorch Geometric achieves high data throughput by leveraging sparse GPU acceleration, by providing dedicated CUDA kernels and by introducing efficient mini-batch handling for input examples of different size. In this work, we present the library in detail and perform a comprehensive comparative study of the implemented methods in homogeneous evaluation scenarios.

2,308 citations

Proceedings Article
28 Jun 2011
TL;DR: This work presents a novel approach to relational learning based on the factorization of a three-way tensor that is able to perform collective learning via the latent components of the model and provide an efficient algorithm to compute the factorizations.
Abstract: Relational learning is becoming increasingly important in many areas of application. Here, we present a novel approach to relational learning based on the factorization of a three-way tensor. We show that unlike other tensor approaches, our method is able to perform collective learning via the latent components of the model and provide an efficient algorithm to compute the factorization. We substantiate our theoretical considerations regarding the collective learning capabilities of our model by the means of experiments on both a new dataset and a dataset commonly used in entity resolution. Furthermore, we show on common benchmark datasets that our approach achieves better or on-par results, if compared to current state-of-the-art relational learning solutions, while it is significantly faster to compute.

1,830 citations

Journal ArticleDOI
01 Jan 2016
TL;DR: This paper provides a review of how statistical models can be “trained” on large knowledge graphs, and then used to predict new facts about the world (which is equivalent to predicting new edges in the graph) and how such statistical models of graphs can be combined with text-based information extraction methods for automatically constructing knowledge graphs from the Web.
Abstract: Relational machine learning studies methods for the statistical analysis of relational, or graph-structured, data. In this paper, we provide a review of how such statistical models can be “trained” on large knowledge graphs, and then used to predict new facts about the world (which is equivalent to predicting new edges in the graph). In particular, we discuss two fundamentally different kinds of statistical relational models, both of which can scale to massive data sets. The first is based on latent feature models such as tensor factorization and multiway neural networks. The second is based on mining observable patterns in the graph. We also show how to combine these latent and observable models to get improved modeling power at decreased computational cost. Finally, we discuss how such statistical models of graphs can be combined with text-based information extraction methods for automatically constructing knowledge graphs from the Web. To this end, we also discuss Google's knowledge vault project as an example of such combination.

1,452 citations

Proceedings ArticleDOI
24 Aug 2008
TL;DR: This model generalizes several existing matrix factorization methods, and therefore yields new large-scale optimization algorithms for these problems, which can handle any pairwise relational schema and a wide variety of error models.
Abstract: Relational learning is concerned with predicting unknown values of a relation, given a database of entities and observed relations among entities. An example of relational learning is movie rating prediction, where entities could include users, movies, genres, and actors. Relations encode users' ratings of movies, movies' genres, and actors' roles in movies. A common prediction technique given one pairwise relation, for example a #users x #movies ratings matrix, is low-rank matrix factorization. In domains with multiple relations, represented as multiple matrices, we may improve predictive accuracy by exploiting information from one relation while predicting another. To this end, we propose a collective matrix factorization model: we simultaneously factor several matrices, sharing parameters among factors when an entity participates in multiple relations. Each relation can have a different value type and error distribution; so, we allow nonlinear relationships between the parameters and outputs, using Bregman divergences to measure error. We extend standard alternating projection algorithms to our model, and derive an efficient Newton update for the projection. Furthermore, we propose stochastic optimization methods to deal with large, sparse matrices. Our model generalizes several existing matrix factorization methods, and therefore yields new large-scale optimization algorithms for these problems. Our model can handle any pairwise relational schema and a wide variety of error models. We demonstrate its efficiency, as well as the benefit of sharing parameters among relations.

1,192 citations


Network Information
Related Topics (5)
Reinforcement learning
46K papers, 1M citations
83% related
Heuristics
32.1K papers, 956.5K citations
80% related
Inference
36.8K papers, 1.3M citations
79% related
Graph (abstract data type)
69.9K papers, 1.2M citations
79% related
Unsupervised learning
22.7K papers, 1M citations
79% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202331
202274
202166
202086
201983
201865