scispace - formally typeset
Search or ask a question
Topic

Statistical time division multiplexing

About: Statistical time division multiplexing is a research topic. Over the lifetime, 3307 publications have been published within this topic receiving 61553 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: This demonstrates that statistical or asynchronous time-division multiplexing (TDM) can efficiently absorb temporal variations of the bit rate of individual sources without the significant variations in reception quality exhibited by multimode videocoders for synchronous TDM or circuit-switched transmission.
Abstract: Models and results are presented that assess the performance of statistical multiplexing of independent video sources. Presented results indicate that the probability of buffering (or delaying) video data beyond an acceptable limit drops dramatically as the number of multiplexed sources increases beyond one. This demonstrates that statistical or asynchronous time-division multiplexing (TDM) can efficiently absorb temporal variations of the bit rate of individual sources without the significant variations in reception quality exhibited by multimode videocoders for synchronous TDM or circuit-switched transmission. Two source models are presented. The first model is an autoregressive continuous-state, discrete-time Markov process, which was used to generate source data in simulation experiments. The second model is a discrete-state, continuous-time Markov process that was used in deriving a fluid-flow queuing analysis. The presented study shows that both models generated consistent numerical results in terms of queuing performance. >

1,041 citations

Proceedings ArticleDOI
01 Oct 1994
TL;DR: The main findings are that the tail behavior of the marginal bandwidth distribution can be accurately described using “heavy-tailed” distributions and the autocorrelation of the VBR video sequence decays hyperbolically and can be modeled using self-similar processes.
Abstract: We present a detailed statistical analysis of a 2-hour long empirical sample of VBR video. The sample was obtained by applying a simple intraframe video compression code to an action movie. The main findings of our analysis are (1) the tail behavior of the marginal bandwidth distribution can be accurately described using “heavy-tailed” distributions (e.g., Pareto); (2) the autocorrelation of the VBR video sequence decays hyperbolically (equivalent to long-range dependence) and can be modeled using self-similar processes. We combine our findings in a new (non-Markovian) source model for VBR video and present an algorithm for generating synthetic traffic. Trace-driven simulations show that statistical multiplexing results in significant bandwidth efficiency even when long-range dependence is present. Simulations of our source model show long-range dependence and heavy-tailed marginals to be important components which are not accounted for in currently used VBR video traffic models.

956 citations

Journal ArticleDOI
TL;DR: The flexible nature of GFDM makes this waveform a suitable candidate for future 5G networks, and its main characteristics are analyzed.
Abstract: Cellular systems of the fourth generation (4G) have been optimized to provide high data rates and reliable coverage to mobile users. Cellular systems of the next generation will face more diverse application requirements: the demand for higher data rates exceeds 4G capabilities; battery-driven communication sensors need ultra-low power consumption; and control applications require very short response times. We envision a unified physical layer waveform, referred to as generalized frequency division multiplexing (GFDM), to address these requirements. In this paper, we analyze the main characteristics of the proposed waveform and highlight relevant features. After introducing the principles of GFDM, this paper contributes to the following areas: 1) the means for engineering the waveform's spectral properties; 2) analytical analysis of symbol error performance over different channel models; 3) concepts for MIMO-GFDM to achieve diversity; 4) preamble-based synchronization that preserves the excellent spectral properties of the waveform; 5) bit error rate performance for channel coded GFDM transmission using iterative receivers; 6) relevant application scenarios and suitable GFDM parameterizations; and 7) GFDM proof-of-concept and implementation aspects of the prototype using hardware platforms available today. In summary, the flexible nature of GFDM makes this waveform a suitable candidate for future 5G networks.

809 citations

Proceedings ArticleDOI
Lixia Zhang1
01 Aug 1990
TL;DR: A new algorithm is described, VirtualClock, for data traffic control in high-speed networks that maintains the statistical multiplexing flexibility of pocket switching while ensuring each data flow its reserved average throughput rate at the same time.
Abstract: A challenging research issue in high speed networking is how to control the transmission rate of statistical data flows. This paper describes a new algorithm, VirtualClock, for data traffic control in high-speed networks. VirtualClock maintains the statistical multiplexing flexibility of pocket switching while ensuring each data flow its reserved average throughput rate at the same time. The algorithm has been tested through simulation.

770 citations

Journal ArticleDOI
TL;DR: This work describes an end-to-end methodology, called self-loading periodic streams (SLoPS), for measuring avail-bw, and uses pathload, a nonintrusive tool, to evaluate the variability ("dynamics") of the avail- bw in Internet paths.
Abstract: The available bandwidth (avail-bw) in a network path is of major importance in congestion control, streaming applications, quality-of-service verification, server selection, and overlay networks. We describe an end-to-end methodology, called self-loading periodic streams (SLoPS), for measuring avail-bw. The basic idea in SLoPS is that the one-way delays of a periodic packet stream show an increasing trend when the stream's rate is higher than the avail-bw. We have implemented SLoPS in a tool called pathload. The accuracy of the tool has been evaluated with both simulations and experiments over real-world Internet paths. Pathload is nonintrusive, meaning that it does not cause significant increases in the network utilization, delays, or losses. We used pathload to evaluate the variability ("dynamics") of the avail-bw in Internet paths. The avail-bw becomes significantly more variable in heavily utilized paths, as well as in paths with limited capacity (probably due to a lower degree of statistical multiplexing). We finally examine the relation between avail-bw and TCP throughput. A persistent TCP connection can be used to measure roughly the avail-bw in a path, but TCP saturates the path and increases significantly the path delays and jitter.

765 citations


Network Information
Related Topics (5)
Network packet
159.7K papers, 2.2M citations
89% related
Wireless network
122.5K papers, 2.1M citations
88% related
Wireless
133.4K papers, 1.9M citations
88% related
Fading
55.4K papers, 1M citations
87% related
Wireless ad hoc network
49K papers, 1.1M citations
85% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20236
202217
20216
202010
201924
201837