scispace - formally typeset
Search or ask a question
Topic

Stefan number

About: Stefan number is a research topic. Over the lifetime, 482 publications have been published within this topic receiving 32056 citations.


Papers
More filters
Book
31 Dec 1959
TL;DR: In this paper, a classic account describes the known exact solutions of problems of heat flow, with detailed discussion of all the most important boundary value problems, including boundary value maximization.
Abstract: This classic account describes the known exact solutions of problems of heat flow, with detailed discussion of all the most important boundary value problems.

21,807 citations

Journal ArticleDOI
TL;DR: In this article, the enthalpy model for multidimensional phase change problems in media having a distinct phase change temperature is demonstrated, and subsequent numerical applications of the model are carried out.
Abstract: The basis of the enthalpy model for multidimensional phase change problems in media having a distinct phase change temperature is demonstrated, and subsequent numerical applications of the model are carried out. It is shown that the mathematical representation of the enthalpy model is equivalent to the conventional conservation equations in the solid and liquid regions and at the solid-liquid interface. The model is employed in conjunction with a fully implicit finite-difference scheme to solve for solidification in a convectively cooled square container. The implicit scheme was selected because of its ability to accommodate a wide range of the Stefan number Ste. After its accuracy had been established, the solution method was used to obtain results for the local and surface-integrated heat transfer rates, boundary temperatures, solidified fraction, and interface position, all as functions of time. The results are presented with SteFo (Fo = Fourier number) as a correlating parameter, thereby facilitating their use for all Ste values in the range investigated. At low values of the Biot number, the surface-integrated heat transfer rate was relatively constant during the entire solidification period, which is a desirable characteristic for phase change thermal energy storage.

385 citations

01 Jan 1975
TL;DR: In this article, the enthalpy model for multidimensional phase change problems in media having a distinct phase change temperature is demonstrated, and subsequent numerical applications of the model are carried out.
Abstract: The basis of the enthalpy model for multidimensional phase change problems in media having a distinct phase change temperature is demonstrated, and subsequent numerical applications of the model are carried out. It is shown that the mathematical representation of the enthalpy model is equivalent to the conventional conservation equations in the solid and liquid regions and at the solid-liquid interface. The model is employed in conjunction with a fully implicit finite-difference scheme to solve for solidification in a convectively cooled square container. The implicit scheme was selected because of its ability to accommodate a wide range of the Stefan number Ste. After its accuracy had been established, the solution method was used to obtain results for the local and surface-integrated heat transfer rates, boundary temperatures, solidified fraction, and interface position, all as functions of time. The results are presented with SteFo (Fo = Fourier number) as a correlating parameter, thereby facilitating their use for all Ste values in the range investigated. At low values of the Biot number, the surface-integrated heat transfer rate was relatively constant during the entire solidification period, which is a desirable characteristic for phase change thermal energy storage.

372 citations

Journal ArticleDOI
TL;DR: In this article, heat transfer enhancement technique by using internal and external fins for PCM melting in a triplex tube heat exchanger (TTHX) was investigated numerically.

350 citations

Journal ArticleDOI
TL;DR: In this article, a framework for understanding low Weber number deposition in terms of similarity laws and experimentation is presented, based on experiments from the highly viscous limit to the inertia-dominated limit, correlations are given for the spreading velocity, spreading time scales, post-spreading oscillation amplitudes and oscillation damping time scales.
Abstract: Low Weber number deposition of small molten droplets on cold targets is of importance in certain dropwise buildup processes, but at this time, critical elements are absent from our theoretical understanding of the deposition process, and prediction from basic principles is not possible. This paper lays down a framework for understanding low Weber number deposition in terms of similarity laws and experimentation. Based on experiments from the highly viscous limit to the inertia-dominated limit, correlations are given for the spreading velocity, spreading time scales, post-spreading oscillation amplitudes, and oscillation damping time scales. Molten droplets are arrested, and their final solid shape determined, by contact line freezing. In homologous deposition, where the drop and the target are of the same material, the spreading factor is determined principally by the Stefan number, the dimensionless parameter which measures the temperature difference between the fusion point and the target temperature. Some concluding remarks are offered on what needs to be done to accurately compute such deposition processes.

350 citations

Network Information
Related Topics (5)
Heat transfer
181.7K papers, 2.9M citations
87% related
Laminar flow
56K papers, 1.2M citations
83% related
Reynolds number
68.4K papers, 1.6M citations
82% related
Heat exchanger
184.2K papers, 1M citations
81% related
Boundary layer
64.9K papers, 1.4M citations
77% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20224
202136
202033
201929
201819
201726