scispace - formally typeset
Search or ask a question
Topic

Stenotrophomonas

About: Stenotrophomonas is a research topic. Over the lifetime, 653 publications have been published within this topic receiving 18166 citations. The topic is also known as: P. beteli & P. geniculata.


Papers
More filters
Journal ArticleDOI
TL;DR: While opportunistic bacteria from the rhizosphere have some properties in common, each of these emerging pathogens has its own features, which are discussed in detail for Burkholderia, Ochrobactrum and Stenotrophomonas.
Abstract: Summary During the last years, the number of human infections caused by opportunistic pathogens has increased dramatically. One natural reservoir of opportunistic pathogens is the rhizosphere, the zone around roots that is influenced by the plant. Due to a high content of nutrients, this habitat is a ‘microbial hot-spot’, where bacterial abundances including those with strong antagonistic traits are enhanced. Various bacterial genera, including Burkholderia , Enterobacter , Herbaspirillum , Ochrobactrum , Pseudomonas , Ralstonia , Staphylococcus and Stenotrophomonas , contain root-associated strains that can encounter bivalent interactions with both plant and human hosts. Mechanisms responsible for colonization of the rhizosphere and antagonistic activity against plant pathogens are similar to those responsible for colonization of human organs and tissues, and pathogenicity. Multiple resistances against antibiotics are not only found with clinical strains but also with strains isolated from the rhizosphere. High competition, the occurrence of diverse antibiotics in the rhizosphere, and enhanced horizontal gene transfer rates in this microenvironment appear to contribute to the high levels of natural resistances. While opportunistic bacteria from the rhizosphere have some properties in common, each of these emerging pathogens has its own features, which are discussed in detail for Burkholderia , Ochrobactrum and Stenotrophomonas .

622 citations

Journal ArticleDOI
TL;DR: The versatility of the bacteria in the genus Stenotrophomonas is discussed and the insight that comparative genomic analysis of clinical and endophytic isolates of S. maltophilia has brought to the understanding of the adaptation of this genus to various niches is discussed.
Abstract: The genus Stenotrophomonas comprises at least eight species. These bacteria are found throughout the environment, particularly in close association with plants. Strains of the most predominant species, Stenotrophomonas maltophilia, have an extraordinary range of activities that include beneficial effects for plant growth and health, the breakdown of natural and man-made pollutants that are central to bioremediation and phytoremediation strategies and the production of biomolecules of economic value, as well as detrimental effects, such as multidrug resistance, in human pathogenic strains. Here, we discuss the versatility of the bacteria in the genus Stenotrophomonas and the insight that comparative genomic analysis of clinical and endophytic isolates of S. maltophilia has brought to our understanding of the adaptation of this genus to various niches.

619 citations

Journal ArticleDOI
TL;DR: Comparison of the newly obtained data with results previously obtained by well-established genotypic and chemotaxonomic methods shows the superior discriminative power of AFLP towards the differentiation of highly related bacterial strains that belong to the same species or even biovar (i.e. to characterize strains at the infrasubspecific level).
Abstract: We investigated the usefulness of a novel DNA fingerprinting technique, AFLP, which is based on the selective amplification of genomic restriction fragments by PCR, to differentiate bacterial strains at the subgeneric level. In total, 147 bacterial strains were subjected to AFLP fingerprinting: 36 Xanthomonas strains, including 23 pathovars of Xanthomonas axonopodis and six pathovars of Xanthomonas vasicola, one strain of Stenotrophomonas, 90 genotypically characterized strains comprising all 14 hybridization groups currently described in the genus Aeromonas, and four strains of each of the genera Clostridium, Bacillus, Acinetobacter, Pseudomonas and Vibrio. Depending on the genus, total genomic DNA of each bacterium was digested with a particular combination of two restriction endonucleases and the resulting fragments were ligated to restriction halfsite-specific adaptors. These adaptors served as primer-binding sites allowing the fragments to be amplified by selective PCR primers that extend beyond the adaptor and restriction site sequences. Following electrophoretic separation on 5% (w/v) polyacrylamide/8.3 M urea, amplified products could be visualized by autoradiography because one of the selective primers was radioactively labelled. The resulting banding patterns, containing approximately 30-50 visualized PCR products in the size range 80-550 bp, were captured by a high-resolution densitoscanner and further processed for computer-assisted analysis to determine band-based similarity coefficients. This study reveals extensive evidence for the applicability of AFLP in bacterial taxonomy through comparison of the newly obtained data with results previously obtained by well-established genotypic and chemotaxonomic methods such as DNA-DNA hybridization and cellular fatty acid analysis. In addition, this study clearly demonstrates the superior discriminative power of AFLP towards the differentiation of highly related bacterial strains that belong to the same species or even biovar (i.e. to characterize strains at the infrasubspecific level), highlighting the potential of this novel fingerprinting method in epidemiological and evolutionary studies.

561 citations

Journal ArticleDOI
TL;DR: In consideration of the criticisms of the transfer of Pseudomonas maltophilia to the genus Xanthomonas proposed by J. Bradbury, a new generic name is created for this taxon, which includes a single species, Stenotrophomonas Maltophilia.
Abstract: In consideration of the criticisms of the transfer of Pseudomonas maltophilia to the genus Xanthomonas proposed by J. Swings, P. De Vos, M. Van den Mooter, and J. De Ley (Int. J. Syst. Bacteriol. 33:409-413, 1983), a new generic name is created for this taxon. The name Stenotrophomonas is here proposed for the new genus, which includes a single species, Stenotrophomonas maltophilia. This proposal restores the genus Xanthomonas to its former definition (J. Bradbury, p. 199-210, in N. R. Krieg and J. G. Holt, ed., Bergey's Manual of Systematic Bacteriology, 1984) The arguments on which this proposal is based are presented.

441 citations

Journal ArticleDOI
TL;DR: It is demonstrated that small organic volatile compounds emitted from bacterial antagonists negatively influence the mycelial growth of the soil-borne phytopathogenic fungus Rhizoctonia solani Kühn.
Abstract: Bacterial antagonists are bacteria that negatively affect the growth of other organisms. Many antagonists inhibit the growth of fungi by various mechanisms, e.g., secretion of lytic enzymes, siderophores and antibiotics. Such inhibition of fungal growth may indirectly support plant growth. Here, we demonstrate that small organic volatile compounds (VOCs) emitted from bacterial antagonists negatively influence the mycelial growth of the soil-borne phytopathogenic fungus Rhizoctonia solani Kuhn. Strong inhibitions (99-80%) under the test conditions were observed with Stenotrophomonas maltophilia R3089, Serratia plymuthica HRO-C48, Stenotrophomonas rhizophila P69, Serratia odorifera 4Rx13, Pseudomonas trivialis 3Re2-7, S. plymuthica 3Re4-18 and Bacillus subtilis B2g. Pseudomonas fluorescens L13-6-12 and Burkholderia cepacia 1S18 achieved 30% growth reduction. The VOC profiles of these antagonists, obtained through headspace collection and analysis on GC-MS, show different compositions and complexities ranging from 1 to almost 30 compounds. Most volatiles are species-specific, but overlapping volatile patterns were found for Serratia spp. and Pseudomonas spp. Many of the bacterial VOCs could not be identified for lack of match with mass-spectra of volatiles in the databases.

387 citations


Network Information
Related Topics (5)
Bacteria
23.6K papers, 715.9K citations
83% related
Biofilm
23K papers, 906.8K citations
82% related
Rhizosphere
21.9K papers, 756.3K citations
79% related
Polymerase chain reaction
18.4K papers, 768.7K citations
78% related
Microbiome
17.2K papers, 690.6K citations
77% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023102
2022204
202158
202044
201944
201830