scispace - formally typeset
Search or ask a question
Topic

Steric effects

About: Steric effects is a research topic. Over the lifetime, 16112 publications have been published within this topic receiving 319615 citations. The topic is also known as: steric hindrance.


Papers
More filters
Journal ArticleDOI
TL;DR: The MESPsteric value showed a good linear correlation with the cone angle values as well as the average of the intervalence HPH angles found in the QM layer, which confirmed the present approach to understanding the steric effect separately from the electronic effect.
Abstract: A two-layer ONIOM(B3LYP/6-31G(d,p):UFF) quantum mechanics (QM)−molecular mechanics (MM) optimization of PR3 ligands, where the QM layer is always constructed as PH3, followed by molecular electrostatic potential (MESP) analysis of the QM layer is suggested as a simple and effective method for evaluating the steric effect of PR3 ligands. The subtle variations in the electron distribution that arise as a result of the steric bulkiness as well as the conformational changes in the substituent groups is well reflected in the value of the MESP minimum (Vmin) located in the QM region. In general, a sterically bulky group has always shown a more negative Vmin than a sterically less bulky group. The difference between the Vmin value of free PH3 and the Vmin value at the QM region of PR3 is used as a measure of the steric effect of the PR3 ligand. This value, designated as MESPsteric, showed a good linear correlation with the cone angle values as well as the average of the intervalence HPH angles found in the QM la...

96 citations

Journal ArticleDOI
TL;DR: By combining gold with silver catalysts, tetrahydropyrroloquinolinones possessing a congested tricyclic structure are obtained via a proven Au/Ag relay catalytic process.
Abstract: Comprehensive utilization of both electronic and steric properties of ligands in homogeneous gold catalysis is achieved in the regiodivergent intramolecular hydroarylation of alkynes. A flexible electron-deficient phosphite ligand, combined with the readily transformable directing group methoxyl amide, is attached to a cationic Au(I) center in three-coordinate mode, affording sterically hindered ortho-position cyclization. Meanwhile, para-position cyclization is exclusively achieved with the assistance of a rigid electron-abundant phosphine ligand-based Au(I) catalyst, in which ligands manifest the compensating effect for cyclization through steric hindrance and electronic properties. By combining gold with silver catalysts, tetrahydropyrroloquinolinones possessing a congested tricyclic structure are obtained via a proven Au/Ag relay catalytic process.

96 citations

Journal ArticleDOI
TL;DR: A range of 1,3-oxathianes based on camphorsulfonic acid have been prepared and tested in the catalytic asymmetric epoxidation of carbonyl compounds.
Abstract: A range of 1,3-oxathianes based on camphorsulfonic acid have been prepared and tested in the catalytic asymmetric epoxidation of carbonyl compounds. It was found that the 1,3-oxathiane derived from acetaldehyde 5b gave the highest yield and enantioselectivity in the epoxidation process. The enantioselectivity was independent of the solvent and metal catalyst used (although yields were dependent on both). The optimum conditions were applied to a range of aldehydes, and good enantioselectivities and diastereoselectivities were observed. The origin of the enantioselectivity was probed, and in particular the role of the oxygen of the 1,3-oxathiane was investigated. Thus, the sulfur and carbon analogues of the camphorsulfonic acid based 1,3-oxathiane (derived from formaldehyde) were prepared (i.e., 1,3-dithiane and thiane analogues). With this series of analogues the steric effects are minimized so that the electronic effects can be investigated. The series of compounds was reacted in the catalytic cycle with ...

96 citations

Journal ArticleDOI
18 May 2016
TL;DR: The relationship between chemical structure and spin state in a transition metal complex has an important bearing on mechanistic bioinorganic chemistry, catalysis by base metals, and the design of spin crossover materials.
Abstract: The relationship between chemical structure and spin state in a transition metal complex has an important bearing on mechanistic bioinorganic chemistry, catalysis by base metals, and the design of spin crossover materials. The latter provide an ideal testbed for this question, since small changes in spin state energetics can be easily detected from shifts in the spin crossover equilibrium temperature. Published structure-function relationships relating ligand design and spin state from the spin crossover literature give varied results. A sterically crowded ligand sphere favors the expanded metal–ligand bonds associated with the high-spin state. However, steric clashes at the molecular periphery can stabilize either the high-spin or the low-spin state in a predictable way, depending on their effect on ligand conformation. In the absence of steric influences, the picture is less clear since electron-withdrawing ligand substituents are reported to favor the low-spin or the high-spin state in different series of compounds. A recent study has shed light on this conundrum, showing that the electronic influence of a substituent on a coordinated metal ion depends on its position on the ligand framework. Finally, hydrogen bonding to complexes containing peripheral N‒H groups consistently stabilizes the low-spin state, where this has been quantified.

96 citations


Network Information
Related Topics (5)
Alkyl
223.5K papers, 2M citations
97% related
Aryl
95.6K papers, 1.3M citations
95% related
Ligand
67.7K papers, 1.3M citations
94% related
Palladium
64.7K papers, 1.3M citations
94% related
Nuclear magnetic resonance spectroscopy
42.6K papers, 1M citations
93% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023942
20221,917
2021346
2020292
2019296
2018307