scispace - formally typeset
Search or ask a question
Topic

Steric effects

About: Steric effects is a research topic. Over the lifetime, 16112 publications have been published within this topic receiving 319615 citations. The topic is also known as: steric hindrance.


Papers
More filters
Journal ArticleDOI
TL;DR: The rate constants obtained for the oxidation of sulfides and sulfoxides clearly indicate the operation of a pronounced electronic and steric effect in the oxygenation reaction with oxo(salen)chromium(V) complexes.
Abstract: The kinetics of oxygenation of several para-substituted phenyl methyl sulfides and sulfoxides with a series of 5-substituted and sterically hindered oxo(salen)chromium(V) complexes have been studied by a spectrophotometric technique. Though the reaction of sulfides follows simple second-order kinetics, sulfoxides bind strongly with the metal center of the oxidant and the oxygen atom is transferred from the oxidant−sulfoxide adduct to the substrate. The reduction potentials, Ered, of eight Cr(V) complexes correlate well with the Hammett σ constants, and the reactivity of the metal complexes is in accordance with the Ered values. The metal complexes carrying bulky tert-butyl groups entail steric effects. Organic sulfides follow a simple electrophilic oxidation mechanism, and the nonligated sulfoxides undergo electrophilic oxidation to sulfones using the oxidant−sulfoxide adduct as the oxidant. Sulfoxides catalyze the Cr(V)−salen complexes' oxygenation of organic sulfides, and the catalytic activity of sulfo...

82 citations

Journal ArticleDOI
TL;DR: The performance of the cationic complexes as catalyst precursors in CO/4-tert-butylstyrene copolymerization under mild pressures and temperatures was analyzed in terms of the productivity and degree of stereoregularity of the polyketones obtained.
Abstract: Continuing our studies into the effect that N-N' ligands have on CO/styrene copolymerization, we prepared new C(1)-symmetrical pyridine-imidazoline ligands with 4',5'-cis stereochemistry in the imidazoline ring (5) and 4',5'-trans stereochemistry (6-10) and compared them with our previously reported ligands (1-4). Their coordination to neutral methylpalladium(II) (5 a-10 a) and cationic complexes (5 b-10 b), investigated in solution by NMR spectroscopy, indicates that both the electronic and steric properties of the imidazolines determine the stereochemistry of the palladium complexes. The crystal structures of two neutral palladium precursors [Pd(Me)(2-n)Cl(n)(N-N')] (n=1 for 8 a; n=2 for 9 a') show that the Pd-N coordination distances and the geometrical distortions in the imidazoline ring depend on the electronic nature of the substituents in the imidazoline fragment. Density functional calculations performed on selected neutral and cationic palladium complexes compare well with NMR and X-ray data. The calculations also account for the formation of only one or two stereoisomers of the cationic complexes. The performance of the cationic complexes as catalyst precursors in CO/4-tert-butylstyrene copolymerization under mild pressures and temperatures was analyzed in terms of the productivity and degree of stereoregularity of the polyketones obtained. Insertion of CO into the Pd-Me bond, which was monitored by multinuclear NMR spectroscopy, shows that the N ligand influences the stereochemistry of the acyl species formed.

82 citations

Journal ArticleDOI
TL;DR: A quantitative analysis of the structure-activity relationship in cholinesterase inhibitors was made and it is shown by means of substitution constants and regression analysis that the effects of substituent groups can be factored into three groups: electronic, steric, hydrophobic.

82 citations

Journal ArticleDOI
TL;DR: In this article, the enthalpies of reaction have been computed for the conjugate additions of MeSH to six α,β-unsaturated ketones, and substituent effects on the activation energies for the rate-determining step of the thiol addition (reaction of the enone with MeS−) were also computed.
Abstract: CBS-QB3 enthalpies of reaction have been computed for the conjugate additions of MeSH to six α,β-unsaturated ketones. Compared with addition to methyl vinyl ketone, the reaction becomes 1–3 kcal mol–1 less exothermic when an α-Me, β-Me, or β-Ph substituent is present on the C═C bond. The lower exothermicity for the substituted enones occurs because the substituted reactant is stabilized more by hyperconjugation or conjugation than the product is stabilized by branching. Substituent effects on the activation energies for the rate-determining step of the thiol addition (reaction of the enone with MeS–) were also computed. Loss of reactant stabilization, and not steric hindrance, is the main factor responsible for controlling the relative activation energies in the gas phase. The substituent effects are further magnified in solution; in water (simulated by CPCM calculations), the addition of MeS– to an enone is disfavored by 2–6 kcal mol–1 when one or two methyl groups are present on the C═C bond (ΔΔG⧧). The...

82 citations

Journal ArticleDOI
TL;DR: The difference between inositol hexaphosphate effects on initial stages of oxidation and oxygenation indicates that the explanation for “multiple T states” in oxygen binding lies in the ability of the polyanion to greatly increase steric hindrance to ligand entry, without appreciable changes in the electronic features of the heme environment.

82 citations


Network Information
Related Topics (5)
Alkyl
223.5K papers, 2M citations
97% related
Aryl
95.6K papers, 1.3M citations
95% related
Ligand
67.7K papers, 1.3M citations
94% related
Palladium
64.7K papers, 1.3M citations
94% related
Nuclear magnetic resonance spectroscopy
42.6K papers, 1M citations
93% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023942
20221,917
2021346
2020292
2019296
2018307