scispace - formally typeset
Search or ask a question
Topic

Steric effects

About: Steric effects is a research topic. Over the lifetime, 16112 publications have been published within this topic receiving 319615 citations. The topic is also known as: steric hindrance.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a series of arylpalladium alkyl complexes of the formula (DPPBz)Pd(Ar)(R) has been prepared to reveal the influence of steric and electronic parameters on structure, stability, and reactivity.

236 citations

Journal ArticleDOI
TL;DR: Isoselectivity generally increases with increased flexibility of the backbone linker, which is presumed to be better able to accommodate any potential steric clashes between the propagating polymer chain, the inserting monomer unit, and the substituents on the phenoxy donor.
Abstract: A series of aluminum salen-type complexes [where salen is N,N′-bis(salicylaldimine)-1,2-ethylenediamine] bearing ligands that differ in their steric and electronic properties have been synthesized and investigated for the polymerization of rac-lactide. X-ray crystal structures on key precatalysts reveal metal coordination geometries intermediate between trigonal bipyramidal and square-based pyramidal. Both the phenoxy substituents and the backbone linker have a significant influence over the polymerization. Electron-withdrawing groups attached to the phenoxy donor generally gave an increased polymerization rate, whereas large ortho substituents generally slowed down the polymerization. The vast majority of the initiators afforded polylactide with an isotactic bias; only one exhibited a bias toward heteroselectivity. Isoselectivity generally increases with increased flexibility of the backbone linker, which is presumed to be better able to accommodate any potential steric clashes between the propagating polymer chain, the inserting monomer unit, and the substituents on the phenoxy donor.

233 citations

Journal ArticleDOI
TL;DR: Lewis acid-mediated nucleophilic substitution reactions of substituted tetrahydropyran acetates reveal that the conformational preferences of six-membered-ring cations depend significantly upon the electronic nature of the substituent, and reinforces the idea that ground-state conformational effects need to be considered along with steric approach considerations.
Abstract: Lewis acid-mediated nucleophilic substitution reactions of substituted tetrahydropyran acetates reveal that the conformational preferences of six-membered-ring cations depend significantly upon the electronic nature of the substituent. Nucleophilic substitutions of C-3 and C-4 alkyl-substituted tetrahydropyran acetates proceeded via pseudoequatorially substituted oxocarbenium ions, as would be expected by consideration of steric effects. Substitutions of C-3 and C-4 alkoxy-substituted tetrahydropyran acetates, however, proceeded via pseudoaxially oriented oxocarbenium ions. The unusual selectivities controlled by the alkoxy groups were demonstrated for a range of other heteroatom substituents, including nitrogen, fluorine, chlorine, and bromine. It is believed that the pseudoaxial conformation is preferred in the ground state of the cation because of an electrostatic attraction between the cationic carbon center of the oxocarbenium ion and the heteroatom substituent. This analysis is supported by the observation that selectivity diminishes down the halogen series, which is inconsistent with electron donation as might be expected during anchimeric assistance. The C-2 heteroatom-substituted systems gave moderately high 1,2-cis selectivity, while small alkyl substituents showed no selectivity. Only in the case of the tert-butyl group at C-2 was high 1,2-trans selectivity observed. These studies reinforce the idea that ground-state conformational effects need to be considered along with steric approach considerations.

232 citations

Journal ArticleDOI
TL;DR: A systematic analysis of the effects of strain and electronics on the reactivity of cyclooctynes with azides through both experimental measurements and computational studies using a density functional theory (DFT) distortion/interaction transition state model suggests a correlation between decreased alkyne bond angle and increasedcyclooctyne reactivity.
Abstract: The 1,3-dipolar cycloaddition of cyclooctynes with azides, also called "copper-free click chemistry", is a bioorthogonal reaction with widespread applications in biological discovery. The kinetics of this reaction are of paramount importance for studies of dynamic processes, particularly in living subjects. Here we performed a systematic analysis of the effects of strain and electronics on the reactivity of cyclooctynes with azides through both experimental measurements and computational studies using a density functional theory (DFT) distortion/interaction transition state model. In particular, we focused on biarylazacyclooctynone (BARAC) because it reacts with azides faster than any other reported cyclooctyne and its modular synthesis facilitated rapid access to analogues. We found that substituents on BARAC's aryl rings can alter the calculated transition state interaction energy of the cycloaddition through electronic effects or the calculated distortion energy through steric effects. Experimental data confirmed that electronic perturbation of BARAC's aryl rings has a modest effect on reaction rate, whereas steric hindrance in the transition state can significantly retard the reaction. Drawing on these results, we analyzed the relationship between alkyne bond angles, which we determined using X-ray crystallography, and reactivity, quantified by experimental second-order rate constants, for a range of cyclooctynes. Our results suggest a correlation between decreased alkyne bond angle and increased cyclooctyne reactivity. Finally, we obtained structural and computational data that revealed the relationship between the conformation of BARAC's central lactam and compound reactivity. Collectively, these results indicate that the distortion/interaction model combined with bond angle analysis will enable predictions of cyclooctyne reactivity and the rational design of new reagents for copper-free click chemistry.

232 citations

Journal ArticleDOI
TL;DR: New details of NADPH binding to Lactobacillus casei dihydrofolate reductase have become visible as a result of crystallographic refinement to an R factor of 0.152 at 1.7 A resolution.

231 citations


Network Information
Related Topics (5)
Alkyl
223.5K papers, 2M citations
97% related
Aryl
95.6K papers, 1.3M citations
95% related
Ligand
67.7K papers, 1.3M citations
94% related
Palladium
64.7K papers, 1.3M citations
94% related
Nuclear magnetic resonance spectroscopy
42.6K papers, 1M citations
93% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023942
20221,917
2021346
2020292
2019296
2018307