scispace - formally typeset
Search or ask a question
Topic

Steroid biosynthesis

About: Steroid biosynthesis is a research topic. Over the lifetime, 1721 publications have been published within this topic receiving 58977 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The term peripheral-type is misleading in describing the location of this class of sites, which exhibits a defined binding specificity in BZs, where their density is either nearly compar­ able to or greater than that of the BZ recognition sites on GABAA receptors.
Abstract: The principal site of action of benzodiazepines (BZs)-one that makes this class of drugs the leading anxiolytic compounds-is a domain that allosteri­ cally regulates chloride channel gating by y-aminobutyric acid (GAB A) on GABAA receptors (1-3). Initial studies to identify specific benzodiazepine receptors in the CNS unexpectedly revealed the presence of additional binding sites in peripheral tissues distinct from those associated with GABAA recep­ tors in the brain (4). Because of its initial identification outside the CNS, this class of recognition sites became commonly known as peripheral-type benzo­ diazepine recognition sites . These BZ binding sites exist in nearly all mamma­ lian tissues, including the eNS, where their density is either nearly compar­ able to or greater than that of the BZ recognition sites on GABAA receptors (5, 6). The term peripheral-type is therefore misleading in describing the location of this class of sites, which exhibits a defined binding specificity. Other potential recognition sites for BZs have been reported (7-9); therefore, one should not assume that peripheral-type BZ receptors include these more

113 citations

Journal ArticleDOI
TL;DR: P450 oxidoreductase deficiency (ORD) has a complex phenotype including two unique features not observed in any other CAH variant, skeletal malformations and severe genital ambiguity in both sexes, with a specific focus on ORD.
Abstract: Congenital adrenal hyperplasia (CAH) comprises a group of autosomal recessive disorders, which are usually due to inactivating mutations in single enzymes involved in adrenal steroid biosynthesis. The characteristics of the biochemical and clinical phenotype depend on the specific enzymatic defect. In 21-hydroxylase and 11beta-hydroxylase deficiency only adrenal steroidogenesis is affected, whereas a defect in 3beta-hydroxysteroid dehydrogenase or 17alpha-hydroxylase also involves gonadal steroid biosynthesis. Recently, mutations in the electron donor enzyme P450 oxidoreductase were identified as the cause of CAH with apparent combined 17alpha-hydroxylase and 21-hydroxylase deficiency, thereby illustrating the impact of redox regulation enzymes on steroidogenesis. P450 oxidoreductase deficiency (ORD) has a complex phenotype including two unique features not observed in any other CAH variant, skeletal malformations and severe genital ambiguity in both sexes. Despite invariably low circulating androgens, females with ORD may present with virilized genitalia and mothers may suffer from virilization during pregnancy. This apparently contradictory finding may be explained by the existence of an alternative pathway in human androgen biosynthesis, with important implications for physiology and pathophysiology. This review discusses the biochemical and clinical presentation and the genetic and functional basis of the currently known CAH variants, with a specific focus on ORD.

112 citations

Journal ArticleDOI
TL;DR: Results demonstrate that ACTH regulation of MC2R is highly conserved in vertebrates, whereas the tissue-specific distribution of this receptor transcript level leads us to propose a role for ACTH signaling in the stressor-mediated suppression of sex steroid levels in fish.
Abstract: ACTH, the primary secretagogue for corticosteroid biosynthesis, binds to melanocortin 2 receptor (MC2R) and activates the signaling cascade leading to steroid biosynthesis in the adrenal cortex. Whereas MC2R regulation has been studied using mammalian models, little is known about the molecular mechanisms involved in ACTH signaling in nonmammalian vertebrates. A full-length cDNA encoding MC2R was sequenced from rainbow trout (Oncorhynchus mykiss) interrenal tissue (analogous to the adrenal cortex in mammals) and showed about 60 and about 44% amino acid sequence similarity to teleosts and humans, respectively. Phylogenetic analysis confirmed that MC2R from all species clustered together and was distant from other MCRs. Quantitative real-time PCR revealed a marked tissue-specific difference in MC2R mRNA abundance, with the highest levels observed in the interrenal tissue, ovary, and testis. Acute ACTH, but not α-MSH or [Nle4, d-Phe7]-MSH, stimulation resulted in a time- and dose-related elevation in MC2R mR...

112 citations

Journal ArticleDOI
TL;DR: It is demonstrated that, in mouse Leydig cells, cAMP-independent signaling events regulate steroidogenesis in a StAR phosphorylation-independent manner.
Abstract: In the regulation of steroid biosynthesis, a process mediated by the steroidogenic acute regulatory (StAR) protein, both cAMP-dependent and -independent pathways are involved. While the cAMP-dependent regulatory events represent, by far, the most robust increase in steroid synthesis and are well established, the knowledge regarding cAMP-independent mechanisms is lacking. The present investigation was designed to elucidate the potential involvement of the latter in regulating StAR expression and steroidogenesis in mouse Leydig tumor cells (mLTC-1 cells). Treatment of mLTC-1 cells with a number of factors including insulin-like growth factor-I (IGF-I), epidermal growth factor (EGF), fibroblast growth factor, transforming growth factor (TGF)alpha, interleukin-1 (IL-1), and colony-stimulating factor-1, increased the levels of StAR mRNA, StAR protein, and progesterone to varying degrees and utilized signaling pathways that are not associated with elevations in intracellular cAMP levels. Importantly, phosphorylation of StAR in response to these stimuli was undetectable, which is in marked contrast to observations with human chorionic gonadotropin (hCG), indicating factors that do not alter intracellular cAMP, regulate the steroid biosynthesis in a StAR phosphorylation-independent manner. In addition, the roles for factors involved in cross-talk between the protein kinase pathways, PKA and PKC, were demonstrated. Further characterization of signaling by one such cAMP-independent factor, TGFalpha, demonstrated that the mechanism, whereby it increased StAR expression and steroid synthesis, was dependent on de novo protein synthesis and mediated via activation of the EGF receptor. TGFalpha was also able to augment hCG-stimulated cAMP synthesis, StAR protein and StAR phosphorylation, and influence hCG binding and LH receptor mRNA expression. Furthermore, TGFalpha increased phosphorylation of extracellular signal-regulated kinases 1/2 (ERK1/2) and cAMP-response element-binding protein (CREB), processes inhibited by the mitogen-activated protein kinase/ERK inhibitor U0126 and by expression of non-phosphorylatable CREB-M1 respectively. Inhibition of ERK activity enhanced TGFalpha-mediated StAR protein expression (but not its phosphorylation) and decreased progesterone synthesis, events correlated with the expression of dosage-sensitive sex reversal, adrenal hypoplasia congenita, critical region on the X chromosome, gene 1 (DAX-1) and scavenger receptor class B type 1 (SR-B1). Collectively, these findings demonstrate that, in mouse Leydig cells, cAMP-independent signaling events regulate steroidogenesis in a StAR phosphorylation-independent manner.

111 citations

Journal ArticleDOI
16 Jan 2008-PLOS ONE
TL;DR: It is shown that StAR is a novel substrate of ERK1/2, and that mitochondrial ERK 1/2 is part of a multimeric protein kinase complex that regulates cholesterol transport, and the role of MAPKs in mitochondrial function is underlined.
Abstract: ERK1/2 is known to be involved in hormone-stimulated steroid synthesis, but its exact roles and the underlying mechanisms remain elusive. Both ERK1/2 phosphorylation and steroidogenesis may be triggered by cAMP/cAMP-dependent protein kinase (PKA)-dependent and-independent mechanisms; however, ERK1/2 activation by cAMP results in a maximal steroidogenic rate, whereas canonical activation by epidermal growth factor (EGF) does not. We demonstrate herein by Western blot analysis and confocal studies that temporal mitochondrial ERK1/2 activation is obligatory for PKA-mediated steroidogenesis in the Leydig-transformed MA-10 cell line. PKA activity leads to the phosphorylation of a constitutive mitochondrial MEK1/2 pool with a lower effect in cytosolic MEKs, while EGF allows predominant cytosolic MEK activation and nuclear pERK1/2 localization. These results would explain why PKA favors a more durable ERK1/2 activation in mitochondria than does EGF. By means of ex vivo experiments, we showed that mitochondrial maximal steroidogenesis occurred as a result of the mutual action of steroidogenic acute regulatory (StAR) protein –a key regulatory component in steroid biosynthesis-, active ERK1/2 and PKA. Our results indicate that there is an interaction between mitochondrial StAR and ERK1/2, involving a D domain with sequential basic-hydrophobic motifs similar to ERK substrates. As a result of this binding and only in the presence of cholesterol, ERK1/2 phosphorylates StAR at Ser232. Directed mutagenesis of Ser232 to a non-phosphorylable amino acid such as Ala (StAR S232A) inhibited in vitro StAR phosphorylation by active ERK1/2. Transient transfection of MA-10 cells with StAR S232A markedly reduced the yield of progesterone production. In summary, here we show that StAR is a novel substrate of ERK1/2, and that mitochondrial ERK1/2 is part of a multimeric protein kinase complex that regulates cholesterol transport. The role of MAPKs in mitochondrial function is underlined.

111 citations


Network Information
Related Topics (5)
Amino acid
124.9K papers, 4M citations
78% related
Gene expression
113.3K papers, 5.5M citations
78% related
Protein kinase A
68.4K papers, 3.9M citations
78% related
Receptor
159.3K papers, 8.2M citations
78% related
Insulin
124.2K papers, 5.1M citations
76% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202315
202221
2021117
2020109
201975
201860