scispace - formally typeset
Search or ask a question
Topic

Steroid biosynthesis

About: Steroid biosynthesis is a research topic. Over the lifetime, 1721 publications have been published within this topic receiving 58977 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The findings uncover novel hallmarks of SMA disease progression and link SMN to general male infertility, including steroid biosynthesis, apoptosis, and spermatogenesis.
Abstract: Spinal muscular atrophy (SMA) is caused by low levels of survival motor neuron (SMN), a multifunctional protein essential for higher eukaryotes. While SMN is one of the most scrutinized proteins associated with neurodegeneration, its gender-specific role in vertebrates remains unknown. We utilized a mild SMA model (C/C model) to examine the impact of low SMN on growth and development of mammalian sex organs. We show impaired testis development, degenerated seminiferous tubules, reduced sperm count and low fertility in C/C males, but no overt sex organ phenotype in C/C females. Underscoring an increased requirement for SMN expression, wild type testis showed extremely high levels of SMN protein compared to other tissues. Our results revealed severe perturbations in pathways critical to C/C male reproductive organ development and function, including steroid biosynthesis, apoptosis, and spermatogenesis. Consistent with enhanced apoptosis in seminiferous tubules of C/C testes, we recorded a drastic increase in cells with DNA fragmentation. SMN was expressed at high levels in adult C/C testis due to an adult-specific splicing switch, but could not compensate for low levels during early testicular development. Our findings uncover novel hallmarks of SMA disease progression and link SMN to general male infertility.

53 citations

Journal ArticleDOI
TL;DR: Observations indicated that exosomes present in SP are involved in the immune-related gene regulation in the uterus, which could pave the passage for sperm and possibly fertilized eggs.

53 citations

Journal ArticleDOI
TL;DR: The purpose of this review was to acquaint practicing oncologists with the fundamental principles and pathways of steroid biosynthesis, to improve their understanding of how and why these drugs work, and to alert these physicians to potential problems related to the drugs’ mechanisms of action.
Abstract: In 2005, results from the Arimidex, Tamoxifen Alone or in Combination (ATAC) trial ushered in a new era of endocrine therapy for hormone-responsive malignancies. This study demonstrated that, compared with tamoxifen (a selective estrogen receptor modulator), anastrozole (aromatase inhibitor [AI]) prolonged time to recurrence and disease-free survival for postmenopausal women with breast cancer. The advantage was even greater for those with estrogen receptor-positive (ER) tumors, and anastrozole was better tolerated than tamoxifen. Since then, AIs have become first-line adjuvant therapy for ER breast cancer in postmenopausal women.In late 2010, a trial comparing abiraterone acetate (a 17-hydroxylase/17,20-lyase [CYP17A1] inhibitor) plus prednisone versus prednisone alone in men with castration-resistant prostate cancer (CRPC) previously treated with docetaxel chemotherapy was terminated early because of the survival benefit in the abiraterone acetate arm. This result not only validated a new therapy for CRPC but also, with the antecedent phase I-II abiraterone studies, shattered our understanding of the molecular mechanisms underpinning CRPC development and progression.Aromatase inhibitors and CYP17A1 inhibitors will be widely used by oncologists, yet fellowship programs provide little training in steroid biosynthesis, compared with training in the biology of standard chemotherapies. Consequently, these drugs might be used without an appreciation of their caveats and pitfalls. The purpose of this review was to acquaint practicing oncologists with the fundamental principles and pathways of steroid biosynthesis, to improve their understanding of how and why these drugs work, and to alert these physicians to potential problems related to the drugs' mechanisms of action.

53 citations

Journal ArticleDOI
TL;DR: These studies suggest that this fatty acid may be instrumental in transducing a signal from trophic hormone/receptor interaction to the nucleus utilizing a pathway different from the reported cyclic AMP pathway.

53 citations

Journal ArticleDOI
TL;DR: An alternating expression of proteins related to cell survival in endometria from PCOSE may potentially be associated with the disruption of their endometrial cell cycle.

52 citations


Network Information
Related Topics (5)
Amino acid
124.9K papers, 4M citations
78% related
Gene expression
113.3K papers, 5.5M citations
78% related
Protein kinase A
68.4K papers, 3.9M citations
78% related
Receptor
159.3K papers, 8.2M citations
78% related
Insulin
124.2K papers, 5.1M citations
76% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202315
202221
2021117
2020109
201975
201860