scispace - formally typeset
Search or ask a question
Topic

Steroid biosynthesis

About: Steroid biosynthesis is a research topic. Over the lifetime, 1721 publications have been published within this topic receiving 58977 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The chemical and biological properties of steroid biosynthetic inhibitors are summarized, and their possible clinical applications and limitations are described.
Abstract: Cushings syndrome is a rare disease with significant morbidity and mortality. Surgical intervention represents the most effective treatment option in both adrenocorticotropin-dependent and – independent forms of hypercortisolism. It is not uncommon, however, that surgery fails to cure or control the disease. Pharmacotherapy with drugs inhibiting steroid biosynthesis can be effectively used in these cases in order to alleviate symptoms or even to induce chemical adrenalectomy. A few drugs inhibiting single or multiple steps in adrenal steroid biosynthesis can be used in clinical practice. Drugs predominantly inhibiting single enzymatic steps include the 11β-hydroxylase inhibitor metyrapone and the 3β- hydroxysteroid dehydrogenase inhibitor trilostane, whereas mitotane, aminoglutethimide, ketoconazole and etomidate block multiple enzymatic reactions. Etomidate is the only agent available for parenteral administration that renders it as a treatment of choice in critically ill patients requiring a rapid control of hypercortisolemia. Ketoconazole, metyrapone and aminoglutethimide can be used alone or in combination for the treatment of hypercortisolism caused by benign adrenocorticotropin- or cortisol-secreting tumors. The clinical utility of trilostane is variable. Besides blocking multiple steps in adrenal steroid biosynthesis, the DDT (insecticide) analogue mitotane also has adrenolytic properties by inducing mitochondrial degeneration that renders it superior to other drugs in the treatment of adrenocortical cancer. Severe side effects may develop during therapy with each aforementioned drug that include hepatic, endocrine and neurological toxicity. After summarizing the chemical and biological properties of steroid biosynthetic inhibitors, the authors describe their possible clinical applications and limitations.

45 citations

Journal ArticleDOI
TL;DR: Spectrophotometric studies show that spectra induced in bovine mitochondrial and microsomal cytochrome P-450 preparations closely resemble those induced in the same preparations by steroid substrates, which implicate an interaction between DDT or o,p'DDD and adrenocortical cyto Chrome which inhibits steroid hormone formation.

44 citations

Journal ArticleDOI
TL;DR: It is reported that overexpressed HE4 promoted ovarian cancer cells proliferation, invasion and metastasis and that HE4 has the potential to serve as a novel therapeutic target for ovarian cancer.
Abstract: Overexpression of Human epididymis protein 4 (HE4) related with a role in ovarian cancer tumorigenesis while little is known about the molecular mechanism alteration by HE4 up regulation. Here we reported that overexpressed HE4 promoted ovarian cancer cells proliferation, invasion and metastasis. Furthermore, human whole genome gene expression profile microarrays revealed that 231 differentially expressed genes (DEGs) were altered in response to HE4, in which MAPK signaling, ECM receptor, cell cycle, steroid biosynthesis pathways were involved. The findings suggested that overexpressed HE4 played an important role in ovarian cancer progression and metastasis and that HE4 has the potential to serve as a novel therapeutic target for ovarian cancer.

44 citations

Journal ArticleDOI
TL;DR: The zones of human adrenal cortices have been separated by slicing and their chemical composition and steroid biosynthetic activity in vitro examined and theories of the functional zonation of the adrenal cortex in man are discussed.
Abstract: The zones of human adrenal cortices have been separated by slicing and their chemical composition and steroid biosynthetic activity in vitro examined. Cells of both the reticular and fascicular zones show similar steroid 11β-hydroxylating activity. “Clear” cells of the zona fasciculata alone show a significant increase in steroid biosynthesis on stimulation with ACTH. Theories of the functional zonation of the adrenal cortex in man are discussed in the light of these and other findings.

44 citations

Journal ArticleDOI
TL;DR: Examination of the effects of Tspo-specific mutations on steroid formation in hormone- and cyclic adenosine monophosphate-responsive MA-10 cells using the CRISPR/Cas9 system provides further evidence for the critical role of TSPO in steroid biosynthesis and suggests that it may function at least in part via its regulation of ΔΨm and effects on STAR.
Abstract: The outer mitochondrial membrane translocator protein (TSPO) binds cholesterol with high affinity and is involved in mediating its delivery into mitochondria, the rate-limiting step in hormone-induced steroidogenesis. Specific ligand binding to TSPO has been shown to initiate steroid formation. However, recent studies of the genetic deletion of Tspo have provided conflicting results. Here, we address and extend previous studies by examining the effects of Tspo-specific mutations on steroid formation in hormone- and cyclic adenosine monophosphate (cAMP)-responsive MA-10 cells, using the CRISPR/Cas9 system. Two mutant subcell lines, nG1 and G2G, each carrying a Tspo exon2-specific genome modification, and two control subcell lines, G1 and HH, each carrying a wild-type Tspo, were produced. In response to dibutyryl cAMP, the nG1 and G2G cells produced progesterone at levels significantly lower than those produced by the corresponding control cells G1 and HH. Neutral lipid homeostasis, which provides free cholesterol for steroid biosynthesis, was altered significantly in the Tspo mutant cells. Interestingly, the mitochondrial membrane potential (ΔΨm) of the Tspo mutant cells was significantly reduced compared with that of the control cells, likely because of TSPO interactions with the voltage-dependent anion channel and tubulin at the outer mitochondrial membrane. Steroidogenic acute regulatory protein (STAR) expression was induced in nG1 cells, suggesting that reduced TSPO affected STAR synthesis and/or processing. Taken together, these results provide further evidence for the critical role of TSPO in steroid biosynthesis and suggest that it may function at least in part via its regulation of ΔΨm and effects on STAR.

44 citations


Network Information
Related Topics (5)
Amino acid
124.9K papers, 4M citations
78% related
Gene expression
113.3K papers, 5.5M citations
78% related
Protein kinase A
68.4K papers, 3.9M citations
78% related
Receptor
159.3K papers, 8.2M citations
78% related
Insulin
124.2K papers, 5.1M citations
76% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202315
202221
2021117
2020109
201975
201860