scispace - formally typeset
Search or ask a question
Topic

Steroid biosynthesis

About: Steroid biosynthesis is a research topic. Over the lifetime, 1721 publications have been published within this topic receiving 58977 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: A conditional knockout of Smad2/3 in the uterus was generated and it was demonstrated that Smad 2/3 plays a critical role in the endometrium, with disruption resulting in pubertal-onset uterine hyperplasia and, ultimately, lethal uterine cancer.
Abstract: SMAD2 and SMAD3 are downstream proteins in the transforming growth factor-β (TGF β) signaling pathway that translocate signals from the cell membrane to the nucleus, bind DNA, and control the expression of target genes. While SMAD2/3 have important roles in the ovary, we do not fully understand the roles of SMAD2/3 in the uterus and their implications in the reproductive system. To avoid deleterious effects of global deletion, and given previous data showing redundant function of Smad2 and Smad3, a double-conditional knockout was generated using progesterone receptor-cre (Smad2/3 cKO) mice. Smad2/3 cKO mice were infertile due to endometrial hyperproliferation observed as early as 6 weeks of postnatal life. Endometrial hyperplasia worsened with age, and all Smad2/3 cKO mice ultimately developed bulky endometrioid-type uterine cancers with 100% mortality by 8 months of age. The phenotype was hormone-dependent and could be prevented with removal of the ovaries at 6 weeks of age but not at 12 weeks. Uterine tumor epithelium was associated with decreased expression of steroid biosynthesis genes, increased expression of inflammatory response genes, and abnormal expression of cell cycle checkpoint genes. Our results indicate the crucial role of SMAD2/3 in maintaining normal endometrial function and confirm the hormone-dependent nature of SMAD2/3 in the uterus. The hyperproliferation of the endometrium affected both implantation and maintenance of pregnancy. Our findings generate a mouse model to study the roles of SMAD2/3 in the uterus and serve to provide insight into the mechanism by which the endometrium can escape the plethora of growth regulatory proteins.

41 citations

Journal ArticleDOI
TL;DR: The results suggest that D374Y‐PCSK9 results in up‐regulation of genes involved in sterol biosynthesis and down-regulation of stress‐response genes and specific inflammation pathways.
Abstract: Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a key regulator of serum cholesterol. The possibility that PCSK9 also functions in other pathways needs to be addressed. We have transfected HepG2 cells with mutant D374Y-PCSK9 or control vector. Gene expression signatures were determined using the Affymetrix GeneChip technology, and the expression pattern of selected genes was confirmed by quantitative real-time polymerase chain reaction (qRT-PCR). Data was normalized and analyzed using a model-based background adjustment for oligonucleotide expression arrays, then filtered based upon expression within treatments group, and subjected to moderated t-statistics. Five hundred twenty transcripts had altered expression levels between D374Y-PCSK9 and control vector. Among the 520 probes on our top list, 312 were found to have an assigned Gene Ontology (GO) term, and 96 were found in the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Genome-wide expression profiling revealed that "steroid biosynthesis," "sterol metabolism," and "cholesterol biosynthsis" were affected by D374Y-PCSK9. Also, the GO biological process terms "response to stresss," "response to virus," "response to unfolded protein," and "immune response" were influenced by D374Y-PCSK9. Our results suggest that D374Y-PCSK9 results in up-regulation of genes involved in sterol biosynthesis and down-regulation of stress-response genes and specific inflammation pathways.

41 citations

Journal ArticleDOI
18 Jun 1966-Nature
TL;DR: During incubations of ovaries in vitro an exchange of precursors and products between different cell types may be facilitated because of breakdown of naturally occurring barriers, such as the basement membrane between the granulosa layer and the theca interna of the follicle.
Abstract: OUR knowledge of the pathways of steroid biosynthesis in the ovary has been gained mainly by incubations of ovaries in vitro1,2. The tissues incubated have contained numerous cell types: granulosa cells, theca interna cells, stromal cells, interstitial cells, and sometimes luteal cells. Possibly such mixtures of two or more different cell types are able to secrete hormones that one cell type cannot secrete by itself3–9. Furthermore, during such incubations in vitro an exchange of precursors and products between different cell types may be facilitated because of breakdown of naturally occurring barriers, such as the basement membrane between the granulosa layer and the theca interna of the follicle.

41 citations

Journal ArticleDOI
TL;DR: NGFI‐B/Nur77 expression was found to be rapidly reduced by an estrogenic endocrine disrupter, diethylstilbestrol (DES) in theca interna cells of immature rat ovaries, suggesting that DES acts on the hypothalamo–pituitary axis to suppress LH secretion from the pituitary.
Abstract: NR4A1, also called NGFI-B in the rat, Nur77 in the mouse and TR3 in humans, belongs to the orphan nuclear steroid hormone receptor superfamily and is one of the immediate-early genes. In the endocrine organs, including the gonads, NGFI-B/Nur77 gene expression is rapidly induced by pituitary hormones. NGFI-B/Nur77 expression was found to be rapidly reduced by an estrogenic endocrine disrupter, diethylstilbestrol (DES) in theca interna cells of immature rat ovaries. DES treatment also triggered a rapid decrease of serum luteinizing hormone (LH) levels, suggesting that DES acts on the hypothalamo-pituitary axis to suppress LH secretion from the pituitary. The transcriptional regulation of NGFI-B/Nur77 by LH/human chorionic gonadotropin (hCG) or 8-bromoadenosine 3'-5'-cyclic monophosphate (8 Br-cAMP) was examined in mouse Leydig tumor cells MA-10. Luciferase assays using NGFI-B/Nur77 promoter constructs and electric mobility shift assays (EMSA) showed that NGFI-B/Nur77 gene expression was mediated through three of the four activator protein-1 (AP-1)-like sites, namely the -233 AP-1, -213 AP-1 and -69 AP-1 sites adjacent to the transcription start site of the NGFI-B/Nur77 promoter. We also demonstrated here that both the Jun family and cAMP-responsive element binding (CREB) proteins bind to the -233 AP-1 site, whereas the main binding protein to the -213 AP-1 site was CREB, and Jun family protein to the -69 AP-1 site, respectively. The rapid induction of NGFI-B/Nur77 gene expression by LH/hCG in MA-10 cells appears to be mediated by both CREB and Jun family proteins through the cAMP-protein kinase A (PKA) pathway.

41 citations


Network Information
Related Topics (5)
Amino acid
124.9K papers, 4M citations
78% related
Gene expression
113.3K papers, 5.5M citations
78% related
Protein kinase A
68.4K papers, 3.9M citations
78% related
Receptor
159.3K papers, 8.2M citations
78% related
Insulin
124.2K papers, 5.1M citations
76% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202315
202221
2021117
2020109
201975
201860