scispace - formally typeset
Search or ask a question
Topic

Sterol

About: Sterol is a research topic. Over the lifetime, 8117 publications have been published within this topic receiving 309926 citations. The topic is also known as: sterols & sterol lipids.


Papers
More filters
Journal ArticleDOI
TL;DR: The mechanism of control of plasma cholesterol levels is related to the rate of conversion of cholesterol to bile acids, and it is concluded that, in this species, hyporesponders responded more slowly and to a lesser degree.

115 citations

Journal ArticleDOI
TL;DR: It is concluded that the carbohydrate component of HMG CoA reductase is not required for proper subcellular localization or regulated degradation, and the native structure of the transmembrane component is required to form a normal crystalloid ER and to allow the enzyme to undergo regulated degradation by sterols.
Abstract: 3-Hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase is anchored to the endoplasmic reticulum (ER) membrane by a hydrophobic NH2-terminal domain that contains seven apparent membrane-spanning regions and a single N-linked carbohydrate chain. The catalytic domain, which includes the COOH-terminal two-thirds of the protein, extends into the cytoplasm. The enzyme is normally degraded with a rapid half-life (2 h), but when cells are depleted of cholesterol, its half-life is prolonged to 11 h. Addition of sterols accelerates degradation by fivefold. To explore the requirements for regulated degradation, we prepared expressible reductase cDNAs from which we either deleted two contiguous membrane-spanning regions (numbers 4 and 5) or abolished the single site for N-linked glycosylation. When expressed in hamster cells after transfection, both enzymes retained catalytic activity. The deletion-bearing enzyme continued to be degraded with a rapid half-life in the presence of sterols, but it no longer was stabilized when sterols were depleted. The glycosylation-minus enzyme was degraded at a normal rate and was stabilized normally by sterol deprivation. When cells were induced to overexpress the deletion-bearing enzyme, they did not incorporate it into neatly arranged crystalloid ER tubules, as occurred with the normal and carbohydrate-minus enzymes. Rather, the deletion-bearing enzyme was incorporated into hypertrophied but disordered sheets of ER membrane. We conclude that the carbohydrate component of HMG CoA reductase is not required for proper subcellular localization or regulated degradation. In contrast, the native structure of the transmembrane component is required to form a normal crystalloid ER and to allow the enzyme to undergo regulated degradation by sterols.

114 citations

Journal ArticleDOI
TL;DR: The transcriptionalactivation domains of Upc2p and Ecm22p are identified and it is found that UPC2-1, a mutation that allows cells to take up sterols aerobically, increased the potency of the activation domain and the equivalent mutation in ECM22 also greatly enhanced transcriptional activation.
Abstract: Genes encoding biosynthetic enzymes that make ergosterol, the major fungal membrane sterol, are regulated, in part, at the transcriptional level. Two transcription factors, Upc2p and Ecm22p, bind to the promoters of most ergosterol biosynthetic (ERG) genes, including ERG2 and ERG3, and activate these genes upon sterol depletion. We have identified the transcriptional activation domains of Upc2p and Ecm22p and found that UPC2-1, a mutation that allows cells to take up sterols aerobically, increased the potency of the activation domain. The equivalent mutation in ECM22 also greatly enhanced transcriptional activation. The C-terminal regions of Upc2p and Ecm22p, which contained activation domains, also conferred regulation in response to sterol levels. Hence, the activation and regulatory domains of these proteins overlapped. However, the two proteins differed markedly in how they respond to an increased need for sterols. Upon inducing conditions, Upc2p levels increased, and chromatin immunoprecipitation experiments revealed more Upc2p at promoters even when the activation/regulatory domains were tethered to a different DNA-binding domain. However, induction resulted in decreased Ecm22p levels and a corresponding decrease in the amount of Ecm22p bound to promoters. Thus, these two activators differ in their contributions to the regulation of their targets.

114 citations

Journal ArticleDOI
TL;DR: Genes of the post-squalene ergosterol biosynthetic pathway in Saccharomyces cerevisiae have been overexpressed in a systematic approach with the aim to construct yeast strains that produce high amounts of sterols from a squalene-accumulating strain.
Abstract: Genes of the post-squalene ergosterol biosynthetic pathway in Saccharomyces cerevisiae have been overexpressed in a systematic approach with the aim to construct yeast strains that produce high amounts of sterols from a squalene-accumulating strain. This strain had previously been deregulated by overexpressing a truncated HMG-CoA reductase (tHMG1) in the main bottleneck of the early ergosterol pathway. The overexpression of the gene ERG1 (squalene epoxidase) induced a significant decrease of the direct substrate squalene, a high increase of lanosterol, and a small increase of later sterols. The overexpression of the ERG11 gene encoding the sterol-14α-demethylase resulted in a decrease of lanosterol and an increase of downstream sterols. When these two genes were simultaneously overexpressed, later sterols from zymosterol to ergosterol accumulated and the content of squalene was decreased about three-fold, indicating that these steps had limited the transformation of squalene into sterols. The total sterol content in this strain was three-fold higher than in a wild-type strain.

114 citations

Journal ArticleDOI
01 Feb 1999-Diabetes
TL;DR: The dissociation of PPAR-gamma binding ability from the potency for inhibition of cholesterol synthesis further supports the conclusion that inhibition ofolesterol biosynthesis by troglitazone is unlikely to be mediated by PPAR -gamma.
Abstract: Troglitazone is an antidiabetic agent of the thiazolidinedione family. It is generally believed that thiazolidinediones exert their insulin-sensitizing activity through activation of peroxisome proliferator-activated receptor-gamma (PPAR-gamma), a member of the steroid nuclear receptor superfamily. In the present study, we examined the effect of troglitazone on cholesterol biosynthesis in cultured Chinese hamster ovary (CHO) cells. Troglitazone inhibited biosynthesis of cholesterol, but not that of total sterols, in a dose-dependent manner, with a half-maximal concentration (IC50) value of 8 micromol/l. At 20 micromol/l, troglitazone inhibited cholesterol biosynthesis by more than 80%, resulting in the accumulation of lanosterol and several other sterol products. This inhibitory effect observed in CHO cells was also reproduced in HepG2, L6, and 3T3-L1 cells, suggesting that there is a common pathway for this troglitazone action. One hour after removal of troglitazone from the culture medium, disappearance of the accumulated sterols was accompanied by restored cholesterol synthesis, indicating that those accumulated sterols are precursors of cholesterol. PPAR-gamma reporter assays showed that PPAR-gamma activation by troglitazone was completely blocked by actinomycin D and cycloheximide. In contrast, the inhibition of cholesterol synthesis by troglitazone remained unchanged in the presence of the above compounds, suggesting that this inhibition is mechanistically distinct from the transcriptional regulation by PPAR-gamma. Like troglitazone, two other thiazolidinediones, ciglitazone and englitazone, exhibited similar inhibitory effect on cholesterol synthesis; however, other known PPAR-gamma ligands such as BRL49653, pioglitazone, and 15-deoxy-delta(12,14)-prostaglandin J2 showed only weak or no inhibition. The dissociation of PPAR-gamma binding ability from the potency for inhibition of cholesterol synthesis further supports the conclusion that inhibition of cholesterol biosynthesis by troglitazone is unlikely to be mediated by PPAR-gamma.

114 citations


Network Information
Related Topics (5)
Fatty acid
74.5K papers, 2.2M citations
90% related
Amino acid
124.9K papers, 4M citations
86% related
Enzyme
32.8K papers, 1.1M citations
85% related
Polyunsaturated fatty acid
35.4K papers, 1.2M citations
85% related
Cholesterol
44.6K papers, 1.9M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023104
2022250
2021131
2020154
2019151
2018117