scispace - formally typeset
Search or ask a question
Topic

Sterol

About: Sterol is a research topic. Over the lifetime, 8117 publications have been published within this topic receiving 309926 citations. The topic is also known as: sterols & sterol lipids.


Papers
More filters
Journal ArticleDOI
TL;DR: Strikerol dynamics in sperm maturation is discussed and recent methodological advances that will help to illuminate the complexity of sperm formation and function are described.

100 citations

Journal ArticleDOI
02 Feb 2012-Diabetes
TL;DR: It is suggested that ABCA1 and ABCG1 each make complimentary and important contributions to β-cell function by maintaining islet cholesterol homeostasis in vivo.
Abstract: Cellular cholesterol homeostasis is important for normal β-cell function. Disruption of cholesterol transport by decreased function of the ATP-binding cassette (ABC) transporter ABCA1 results in impaired insulin secretion. Mice lacking β-cell ABCA1 have increased islet expression of ABCG1, another cholesterol transporter implicated in β-cell function. To determine whether ABCA1 and ABCG1 have complementary roles in β-cells, mice lacking ABCG1 and β-cell ABCA1 were generated and glucose tolerance, islet sterol levels, and β-cell function were assessed. Lack of both ABCG1 and β-cell ABCA1 resulted in increased fasting glucose levels and a greater impairment in glucose tolerance compared with either ABCG1 deletion or loss of ABCA1 in β-cells alone. In addition, glucose-stimulated insulin secretion was decreased and sterol accumulation increased in islets lacking both transporters compared with those isolated from knockout mice with each gene alone. Combined deficiency of ABCA1 and ABCG1 also resulted in significant islet inflammation as indicated by increased expression of interleukin-1β and macrophage infiltration. Thus, lack of both ABCA1 and ABCG1 induces greater defects in β-cell function than deficiency of either transporter individually. These data suggest that ABCA1 and ABCG1 each make complimentary and important contributions to β-cell function by maintaining islet cholesterol homeostasis in vivo.

100 citations

Journal ArticleDOI
TL;DR: Findings show that fish protein had multiple effects on plasma and liver lipids that were at least in part caused by an altered expression of the hepatic genes involved in lipid homeostasis.
Abstract: It is known that various dietary plant proteins are capable of influencing the lipid metabolism of human subjects and animals when compared with casein. Less, however, is known about the effects of fish protein on the cholesterol and triacylglycerol metabolism. Therefore, two experiments were conducted in which rats were fed diets containing 200 g of either fish protein, prepared from Alaska pollack fillets, or casein, which served as control, per kilogram, over 20 and 22 d, respectively. As parameters of lipid metabolism, the concentrations of cholesterol and triacylglycerols in the plasma and liver, the faecal excretion of bile acids and the hepatic expression of genes encoding proteins involved in lipid homeostasis were determined. In both experiments, rats fed fish protein had higher concentrations of cholesteryl esters in the liver, a lower concentration of cholesterol in the HDL fraction (rho > 1.063 kg/l) and lower plasma triacylglycerol concentrations than rats fed casein (P < 0.05). The gene expression analysis performed in experiment 2 showed that rats fed fish protein had higher relative mRNA concentrations of sterol regulatory element-binding protein (SREBP)-2, 3-hydroxy-3-methylglutaryl coenzyme A reductase, LDL receptor, apo AI, scavenger receptor B1 and lecithin-cholesterol-acyltransferase in their liver than did rats fed casein (P < 0.05). The faecal excretion of bile acids and the mRNA concentrations of cholesterol 7alpha-hydroxylase, SREBP-1c and corresponding target genes were not altered. These findings show that fish protein had multiple effects on plasma and liver lipids that were at least in part caused by an altered expression of the hepatic genes involved in lipid homeostasis.

100 citations

Journal ArticleDOI
TL;DR: It is demonstrated that strains lacking a functional CBC are severely attenuated for pathogenicity in a pulmonary and systemic model of aspergillosis and inactivation of the CBC increased tolerance to different classes of drugs targeting ergosterol biosynthesis.
Abstract: Azole drugs selectively target fungal sterol biosynthesis and are critical to our antifungal therapeutic arsenal. However, resistance to this class of drugs, particularly in the major human mould pathogen Aspergillus fumigatus, is emerging and reaching levels that have prompted some to suggest that there is a realistic probability that they will be lost for clinical use. The dominating class of pan-azole resistant isolates is characterized by the presence of a tandem repeat of at least 34 bases (TR34) within the promoter of cyp51A, the gene encoding the azole drug target sterol C14-demethylase. Here we demonstrate that the repeat sequence in TR34 is bound by both the sterol regulatory element binding protein (SREBP) SrbA, and the CCAAT binding complex (CBC). We show that the CBC acts complementary to SrbA as a negative regulator of ergosterol biosynthesis and show that lack of CBC activity results in increased sterol levels via transcriptional derepression of multiple ergosterol biosynthetic genes including those coding for HMG-CoA-synthase, HMG-CoA-reductase and sterol C14-demethylase. In agreement with these findings, inactivation of the CBC increased tolerance to different classes of drugs targeting ergosterol biosynthesis including the azoles, allylamines (terbinafine) and statins (simvastatin). We reveal that a clinically relevant mutation in HapE (P88L) significantly impairs the binding affinity of the CBC to its target site. We identify that the mechanism underpinning TR34 driven overexpression of cyp51A results from duplication of SrbA but not CBC binding sites and show that deletion of the 34 mer results in lack of cyp51A expression and increased azole susceptibility similar to a cyp51A null mutant. Finally we show that strains lacking a functional CBC are severely attenuated for pathogenicity in a pulmonary and systemic model of aspergillosis.

99 citations

Journal ArticleDOI
TL;DR: In this article, the effects of cholesterol, 4,4-dimethylcholesterol, and lanosterol (4,4',14alpha-trimethyl-delta8,24-cholestadiene-3beta-ol) on lecithin vesicles have been compared.
Abstract: The effects of cholesterol, 4,4-dimethylcholesterol, and lanosterol (4,4',14alpha-trimethyl-delta8,24-cholestadiene-3beta-ol) on some properties of lecithin vesicles have been compared. Unlike cholesterol, lanosterol retards the exit of trapped glucose from phospholipid vesicles only slightly. The 13C nuclear magnetic resonance spectrum of cholesterol/lecithin vesicles shows no resonances attributable to the sterol. By contrast, several resonances attributable to quaternary carbon atoms or methyl groups are seen in the 13C nuclear magnetic resonance spectrum of lanosterol/lecithin vesicles, indicating that lanosterol is much less immobilized than cholesterol. Because the membrane behavior of 4,4-dimethylcholesterol is closely similar to that of cholesterol, it is concluded that the axial 14-alpha-methyl group is responsible for the lessened membrane immobilization of lanosterol. The results emphasize the importance of a planar sterol alpha-face for interaction with phospholipid acyl chains.

99 citations


Network Information
Related Topics (5)
Fatty acid
74.5K papers, 2.2M citations
90% related
Amino acid
124.9K papers, 4M citations
86% related
Enzyme
32.8K papers, 1.1M citations
85% related
Polyunsaturated fatty acid
35.4K papers, 1.2M citations
85% related
Cholesterol
44.6K papers, 1.9M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023104
2022250
2021131
2020154
2019151
2018117