scispace - formally typeset
Search or ask a question
Topic

Stochastic block model

About: Stochastic block model is a research topic. Over the lifetime, 968 publications have been published within this topic receiving 59618 citations. The topic is also known as: Stochastic blockmodels & Stochastic blockmodel.


Papers
More filters
Journal ArticleDOI
TL;DR: It is demonstrated that the algorithms proposed are highly effective at discovering community structure in both computer-generated and real-world network data, and can be used to shed light on the sometimes dauntingly complex structure of networked systems.
Abstract: We propose and study a set of algorithms for discovering community structure in networks-natural divisions of network nodes into densely connected subgroups. Our algorithms all share two definitive features: first, they involve iterative removal of edges from the network to split it into communities, the edges removed being identified using any one of a number of possible "betweenness" measures, and second, these measures are, crucially, recalculated after each removal. We also propose a measure for the strength of the community structure found by our algorithms, which gives us an objective metric for choosing the number of communities into which a network should be divided. We demonstrate that our algorithms are highly effective at discovering community structure in both computer-generated and real-world network data, and show how they can be used to shed light on the sometimes dauntingly complex structure of networked systems.

12,882 citations

Journal ArticleDOI
TL;DR: In this article, the modularity of a network is expressed in terms of the eigenvectors of a characteristic matrix for the network, which is then used for community detection.
Abstract: Many networks of interest in the sciences, including social networks, computer networks, and metabolic and regulatory networks, are found to divide naturally into communities or modules. The problem of detecting and characterizing this community structure is one of the outstanding issues in the study of networked systems. One highly effective approach is the optimization of the quality function known as “modularity” over the possible divisions of a network. Here I show that the modularity can be expressed in terms of the eigenvectors of a characteristic matrix for the network, which I call the modularity matrix, and that this expression leads to a spectral algorithm for community detection that returns results of demonstrably higher quality than competing methods in shorter running times. I illustrate the method with applications to several published network data sets.

10,137 citations

Journal ArticleDOI
TL;DR: A thorough exposition of the main elements of the clustering problem can be found in this paper, with a special focus on techniques designed by statistical physicists, from the discussion of crucial issues like the significance of clustering and how methods should be tested and compared against each other, to the description of applications to real networks.

8,432 citations

Journal ArticleDOI
TL;DR: Estimation techniques are developed for the special case of a single relation social network, with blocks specified a priori, and an extension of the model allows for tendencies toward reciprocation of ties beyond those explained by the partition.

2,792 citations

Journal ArticleDOI
TL;DR: This work demonstrates how the generalization of blockmodels to incorporate this missing element leads to an improved objective function for community detection in complex networks and proposes a heuristic algorithm forcommunity detection using this objective function or its non-degree-corrected counterpart.
Abstract: Stochastic blockmodels have been proposed as a tool for detecting community structure in networks as well as for generating synthetic networks for use as benchmarks. Most blockmodels, however, ignore variation in vertex degree, making them unsuitable for applications to real-world networks, which typically display broad degree distributions that can significantly affect the results. Here we demonstrate how the generalization of blockmodels to incorporate this missing element leads to an improved objective function for community detection in complex networks. We also propose a heuristic algorithm for community detection using this objective function or its non-degree-corrected counterpart and show that the degree-corrected version dramatically outperforms the uncorrected one in both real-world and synthetic networks.

2,024 citations


Network Information
Related Topics (5)
Inference
36.8K papers, 1.3M citations
80% related
Markov chain
51.9K papers, 1.3M citations
80% related
Estimator
97.3K papers, 2.6M citations
78% related
Upper and lower bounds
56.9K papers, 1.1M citations
77% related
Probability distribution
40.9K papers, 1.1M citations
76% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202357
2022118
2021118
2020163
2019136
2018119