scispace - formally typeset
Search or ask a question
Topic

Stochastic process

About: Stochastic process is a research topic. Over the lifetime, 31227 publications have been published within this topic receiving 898736 citations. The topic is also known as: random process & stochastic processes.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors show that a multimodal map with an invariant measure must satisfy the classical extreme value laws (with no extra condition on the speed of mixing, for example).
Abstract: We consider discrete time dynamical systems and show the link between Hitting Time Statistics (the distribution of the first time points land in asymptotically small sets) and Extreme Value Theory (distribution properties of the partial maximum of stochastic processes). This relation allows to study Hitting Time Statistics with tools from Extreme Value Theory, and vice versa. We apply these results to non-uniformly hyperbolic systems and prove that a multimodal map with an absolutely continuous invariant measure must satisfy the classical extreme value laws (with no extra condition on the speed of mixing, for example). We also give applications of our theory to higher dimensional examples, for which we also obtain classical extreme value laws and exponential hitting time statistics (for balls). We extend these ideas to the subsequent returns to asymptotically small sets, linking the Poisson statistics of both processes.

169 citations

Journal ArticleDOI
TL;DR: In this article, the authors present the first treatment of diffusion, in the stochastic method, for non-linear reaction?diffusion processes, which is equivalent to solving the time evolution of the spatially inhomogeneous master equation.

169 citations

Posted Content
TL;DR: A survey of recent developments in the rapidly expanding field of asymptotic distribution theory, with a special emphasis on the problems of time dependence and heterogeneity is given in this paper.
Abstract: This is a survey of the recent developments in the rapidly expanding field of asymptotic distribution theory, with a special emphasis on the problems of time dependence and heterogeneity The book is designed to be useful on two levels First as a textbook and reference work, giving definitions of the relevant mathematical concepts, statements, and proofs of the important results from the probability literature, and numerous examples; and second, as an account of recent work in the field of particular interest to econometricians, including a number of important new results It is virtually self-contained, with all but the most basic technical prerequisites being explained in their context; mathematical topics include measure theory, integration, metric spaces, and topology, with applications to random variables, and an extended treatment of conditional probability Other subjects treated include: stochastic processes, mixing processes, martingales, mixingales, and near-epoch dependence; the weak and strong laws of large numbers; weak convergence; and central limit theorems for nonstationary and dependent processes The functional central limit theorem and its ramifications are covered in detail, including an account of the theoretical underpinnings (the weak convergence of measures on metric spaces), Brownian motion, the multivariate invariance principle, and convergence to stochastic integrals This material is of special relevance to the theory of cointegration

168 citations

Journal ArticleDOI
TL;DR: An input–output (IO) approach to the delay-dependent stability analysis and H ∞ controller synthesis for a class of continuous-time Markovian jump linear systems (MJLSs) and conditions for the underlying MJLSs are formulated in terms of linear matrix inequalities.
Abstract: This paper proposes an input–output (IO) approach to the delay-dependent stability analysis and H ∞ controller synthesis for a class of continuous-time Markovian jump linear systems (MJLSs). The concerned systems are with a time-varying delay in the state and deficient mode information in the Markov stochastic process, which simultaneously involves the exactly known, partially unknown and uncertain transition rates. It is first shown that the original system with time-varying delay can be reformulated by a new IO model through a process of two-term approximation and the stability problem of the original system can be transformed into the scaled small gain (SSG) problem of the IO model. Then, based on a Markovian Lyapunov–Krasovskii formulation of SSG condition together with some convexification techniques, the stability analysis and state-feedback H ∞ controller synthesis conditions for the underlying MJLSs are formulated in terms of linear matrix inequalities. Simulation studies are provided to illustrate the effectiveness and superiority of the proposed analysis and design methods.

168 citations

Journal ArticleDOI
TL;DR: In this article, the authors show how to derive excursion set theory from a path integral formulation, which allows them to derive rigorously the absorbing barrier boundary condition, and to deal analytically with the non-Markovian nature of the random walk.
Abstract: A classic method for computing the mass function of dark matter halos is provided by excursion set theory, where density perturbations evolve stochastically with the smoothing scale, and the problem of computing the probability of halo formation is mapped into the so-called first-passage time problem in the presence of a barrier. While the full dynamical complexity of halo formation can only be revealed through N-body simulations, excursion set theory provides a simple analytic framework for understanding various aspects of this complex process. In this series of papers we propose improvements of both technical and conceptual aspects of excursion set theory, and we explore up to which point the method can reproduce quantitatively the data from N-body simulations. In Paper I of the series, we show how to derive excursion set theory from a path integral formulation. This allows us both to derive rigorously the absorbing barrier boundary condition, that in the usual formulation is just postulated, and to deal analytically with the non-Markovian nature of the random walk. Such a non-Markovian dynamics inevitably enters when either the density is smoothed with filters such as the top-hat filter in coordinate space (which is the only filter associated with a well-defined halo mass) or when one considers non-Gaussian fluctuations. In these cases, beside "Markovian" terms, we find "memory" terms that reflect the non-Markovianity of the evolution with the smoothing scale. We develop a general formalism for evaluating perturbatively these non-Markovian corrections, and in this paper we perform explicitly the computation of the halo mass function for Gaussian fluctuations, to first order in the non-Markovian corrections due to the use of a top-hat filter in coordinate space. In Paper II of this series we propose to extend excursion set theory by treating the critical threshold for collapse as a stochastic variable, which better captures some of the dynamical complexity of the halo formation phenomenon, while in Paper III we use the formalism developed in this paper to compute the effect of non-Gaussianities on the halo mass function.

168 citations


Network Information
Related Topics (5)
Nonlinear system
208.1K papers, 4M citations
89% related
Robustness (computer science)
94.7K papers, 1.6M citations
86% related
Estimator
97.3K papers, 2.6M citations
86% related
Matrix (mathematics)
105.5K papers, 1.9M citations
85% related
Differential equation
88K papers, 2M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023159
2022355
2021985
20201,151
20191,119
20181,115