Topic

# Stochastic programming

About: Stochastic programming is a(n) research topic. Over the lifetime, 12343 publication(s) have been published within this topic receiving 421049 citation(s).

##### Papers published on a yearly basis

##### Papers

More filters

•

15 Apr 1994

TL;DR: Puterman as discussed by the authors provides a uniquely up-to-date, unified, and rigorous treatment of the theoretical, computational, and applied research on Markov decision process models, focusing primarily on infinite horizon discrete time models and models with discrete time spaces while also examining models with arbitrary state spaces, finite horizon models, and continuous time discrete state models.

Abstract: From the Publisher:
The past decade has seen considerable theoretical and applied research on Markov decision processes, as well as the growing use of these models in ecology, economics, communications engineering, and other fields where outcomes are uncertain and sequential decision-making processes are needed. A timely response to this increased activity, Martin L. Puterman's new work provides a uniquely up-to-date, unified, and rigorous treatment of the theoretical, computational, and applied research on Markov decision process models. It discusses all major research directions in the field, highlights many significant applications of Markov decision processes models, and explores numerous important topics that have previously been neglected or given cursory coverage in the literature. Markov Decision Processes focuses primarily on infinite horizon discrete time models and models with discrete time spaces while also examining models with arbitrary state spaces, finite horizon models, and continuous-time discrete state models. The book is organized around optimality criteria, using a common framework centered on the optimality (Bellman) equation for presenting results. The results are presented in a "theorem-proof" format and elaborated on through both discussion and examples, including results that are not available in any other book. A two-state Markov decision process model, presented in Chapter 3, is analyzed repeatedly throughout the book and demonstrates many results and algorithms. Markov Decision Processes covers recent research advances in such areas as countable state space models with average reward criterion, constrained models, and models with risk sensitive optimality criteria. It also explores several topics that have received little or no attention in other books, including modified policy iteration, multichain models with average reward criterion, and sensitive optimality. In addition, a Bibliographic Remarks section in each chapter comments on relevant historic

11,593 citations

••

27 Jun 2011

TL;DR: This textbook provides a first course in stochastic programming suitable for students with a basic knowledge of linear programming, elementary analysis, and probability to help students develop an intuition on how to model uncertainty into mathematical problems.

Abstract: The aim of stochastic programming is to find optimal decisions in problems which involve uncertain data. This field is currently developing rapidly with contributions from many disciplines including operations research, mathematics, and probability. At the same time, it is now being applied in a wide variety of subjects ranging from agriculture to financial planning and from industrial engineering to computer networks. This textbook provides a first course in stochastic programming suitable for students with a basic knowledge of linear programming, elementary analysis, and probability. The authors aim to present a broad overview of the main themes and methods of the subject. Its prime goal is to help students develop an intuition on how to model uncertainty into mathematical problems, what uncertainty changes bring to the decision process, and what techniques help to manage uncertainty in solving the problems.In this extensively updated new edition there is more material on methods and examples including several new approaches for discrete variables, new results on risk measures in modeling and Monte Carlo sampling methods, a new chapter on relationships to other methods including approximate dynamic programming, robust optimization and online methods.The book is highly illustrated with chapter summaries and many examples and exercises. Students, researchers and practitioners in operations research and the optimization area will find it particularly of interest. Review of First Edition:"The discussion on modeling issues, the large number of examples used to illustrate the material, and the breadth of the coverage make'Introduction to Stochastic Programming' an ideal textbook for the area." (Interfaces, 1998)

5,156 citations

••

TL;DR: A detailed review of the basic concepts of DE and a survey of its major variants, its application to multiobjective, constrained, large scale, and uncertain optimization problems, and the theoretical studies conducted on DE so far are presented.

Abstract: Differential evolution (DE) is arguably one of the most powerful stochastic real-parameter optimization algorithms in current use. DE operates through similar computational steps as employed by a standard evolutionary algorithm (EA). However, unlike traditional EAs, the DE-variants perturb the current-generation population members with the scaled differences of randomly selected and distinct population members. Therefore, no separate probability distribution has to be used for generating the offspring. Since its inception in 1995, DE has drawn the attention of many researchers all over the world resulting in a lot of variants of the basic algorithm with improved performance. This paper presents a detailed review of the basic concepts of DE and a survey of its major variants, its application to multiobjective, constrained, large scale, and uncertain optimization problems, and the theoretical studies conducted on DE so far. Also, it provides an overview of the significant engineering applications that have benefited from the powerful nature of DE.

3,661 citations

•

01 Jan 2011

TL;DR: This chapter discusses Optimization Techniques, which are used in Linear Programming I and II, and Nonlinear Programming II, which is concerned with One-Dimensional Minimization.

Abstract: Preface. 1 Introduction to Optimization. 1.1 Introduction. 1.2 Historical Development. 1.3 Engineering Applications of Optimization. 1.4 Statement of an Optimization Problem. 1.5 Classification of Optimization Problems. 1.6 Optimization Techniques. 1.7 Engineering Optimization Literature. 1.8 Solution of Optimization Problems Using MATLAB. References and Bibliography. Review Questions. Problems. 2 Classical Optimization Techniques. 2.1 Introduction. 2.2 Single-Variable Optimization. 2.3 Multivariable Optimization with No Constraints. 2.4 Multivariable Optimization with Equality Constraints. 2.5 Multivariable Optimization with Inequality Constraints. 2.6 Convex Programming Problem. References and Bibliography. Review Questions. Problems. 3 Linear Programming I: Simplex Method. 3.1 Introduction. 3.2 Applications of Linear Programming. 3.3 Standard Form of a Linear Programming Problem. 3.4 Geometry of Linear Programming Problems. 3.5 Definitions and Theorems. 3.6 Solution of a System of Linear Simultaneous Equations. 3.7 Pivotal Reduction of a General System of Equations. 3.8 Motivation of the Simplex Method. 3.9 Simplex Algorithm. 3.10 Two Phases of the Simplex Method. 3.11 MATLAB Solution of LP Problems. References and Bibliography. Review Questions. Problems. 4 Linear Programming II: Additional Topics and Extensions. 4.1 Introduction. 4.2 Revised Simplex Method. 4.3 Duality in Linear Programming. 4.4 Decomposition Principle. 4.5 Sensitivity or Postoptimality Analysis. 4.6 Transportation Problem. 4.7 Karmarkar's Interior Method. 4.8 Quadratic Programming. 4.9 MATLAB Solutions. References and Bibliography. Review Questions. Problems. 5 Nonlinear Programming I: One-Dimensional Minimization Methods. 5.1 Introduction. 5.2 Unimodal Function. ELIMINATION METHODS. 5.3 Unrestricted Search. 5.4 Exhaustive Search. 5.5 Dichotomous Search. 5.6 Interval Halving Method. 5.7 Fibonacci Method. 5.8 Golden Section Method. 5.9 Comparison of Elimination Methods. INTERPOLATION METHODS. 5.10 Quadratic Interpolation Method. 5.11 Cubic Interpolation Method. 5.12 Direct Root Methods. 5.13 Practical Considerations. 5.14 MATLAB Solution of One-Dimensional Minimization Problems. References and Bibliography. Review Questions. Problems. 6 Nonlinear Programming II: Unconstrained Optimization Techniques. 6.1 Introduction. DIRECT SEARCH METHODS. 6.2 Random Search Methods. 6.3 Grid Search Method. 6.4 Univariate Method. 6.5 Pattern Directions. 6.6 Powell's Method. 6.7 Simplex Method. INDIRECT SEARCH (DESCENT) METHODS. 6.8 Gradient of a Function. 6.9 Steepest Descent (Cauchy) Method. 6.10 Conjugate Gradient (Fletcher-Reeves) Method. 6.11 Newton's Method. 6.12 Marquardt Method. 6.13 Quasi-Newton Methods. 6.14 Davidon-Fletcher-Powell Method. 6.15 Broyden-Fletcher-Goldfarb-Shanno Method. 6.16 Test Functions. 6.17 MATLAB Solution of Unconstrained Optimization Problems. References and Bibliography. Review Questions. Problems. 7 Nonlinear Programming III: Constrained Optimization Techniques. 7.1 Introduction. 7.2 Characteristics of a Constrained Problem. DIRECT METHODS. 7.3 Random Search Methods. 7.4 Complex Method. 7.5 Sequential Linear Programming. 7.6 Basic Approach in the Methods of Feasible Directions. 7.7 Zoutendijk's Method of Feasible Directions. 7.8 Rosen's Gradient Projection Method. 7.9 Generalized Reduced Gradient Method. 7.10 Sequential Quadratic Programming. INDIRECT METHODS. 7.11 Transformation Techniques. 7.12 Basic Approach of the Penalty Function Method. 7.13 Interior Penalty Function Method. 7.14 Convex Programming Problem. 7.15 Exterior Penalty Function Method. 7.16 Extrapolation Techniques in the Interior Penalty Function Method. 7.17 Extended Interior Penalty Function Methods. 7.18 Penalty Function Method for Problems with Mixed Equality and Inequality Constraints. 7.19 Penalty Function Method for Parametric Constraints. 7.20 Augmented Lagrange Multiplier Method. 7.21 Checking the Convergence of Constrained Optimization Problems. 7.22 Test Problems. 7.23 MATLAB Solution of Constrained Optimization Problems. References and Bibliography. Review Questions. Problems. 8 Geometric Programming. 8.1 Introduction. 8.2 Posynomial. 8.3 Unconstrained Minimization Problem. 8.4 Solution of an Unconstrained Geometric Programming Program Using Differential Calculus. 8.5 Solution of an Unconstrained Geometric Programming Problem Using Arithmetic-Geometric Inequality. 8.6 Primal-Dual Relationship and Sufficiency Conditions in the Unconstrained Case. 8.7 Constrained Minimization. 8.8 Solution of a Constrained Geometric Programming Problem. 8.9 Primal and Dual Programs in the Case of Less-Than Inequalities. 8.10 Geometric Programming with Mixed Inequality Constraints. 8.11 Complementary Geometric Programming. 8.12 Applications of Geometric Programming. References and Bibliography. Review Questions. Problems. 9 Dynamic Programming. 9.1 Introduction. 9.2 Multistage Decision Processes. 9.3 Concept of Suboptimization and Principle of Optimality. 9.4 Computational Procedure in Dynamic Programming. 9.5 Example Illustrating the Calculus Method of Solution. 9.6 Example Illustrating the Tabular Method of Solution. 9.7 Conversion of a Final Value Problem into an Initial Value Problem. 9.8 Linear Programming as a Case of Dynamic Programming. 9.9 Continuous Dynamic Programming. 9.10 Additional Applications. References and Bibliography. Review Questions. Problems. 10 Integer Programming. 10.1 Introduction 588. INTEGER LINEAR PROGRAMMING. 10.2 Graphical Representation. 10.3 Gomory's Cutting Plane Method. 10.4 Balas' Algorithm for Zero-One Programming Problems. INTEGER NONLINEAR PROGRAMMING. 10.5 Integer Polynomial Programming. 10.6 Branch-and-Bound Method. 10.7 Sequential Linear Discrete Programming. 10.8 Generalized Penalty Function Method. 10.9 Solution of Binary Programming Problems Using MATLAB. References and Bibliography. Review Questions. Problems. 11 Stochastic Programming. 11.1 Introduction. 11.2 Basic Concepts of Probability Theory. 11.3 Stochastic Linear Programming. 11.4 Stochastic Nonlinear Programming. 11.5 Stochastic Geometric Programming. References and Bibliography. Review Questions. Problems. 12 Optimal Control and Optimality Criteria Methods. 12.1 Introduction. 12.2 Calculus of Variations. 12.3 Optimal Control Theory. 12.4 Optimality Criteria Methods. References and Bibliography. Review Questions. Problems. 13 Modern Methods of Optimization. 13.1 Introduction. 13.2 Genetic Algorithms. 13.3 Simulated Annealing. 13.4 Particle Swarm Optimization. 13.5 Ant Colony Optimization. 13.6 Optimization of Fuzzy Systems. 13.7 Neural-Network-Based Optimization. References and Bibliography. Review Questions. Problems. 14 Practical Aspects of Optimization. 14.1 Introduction. 14.2 Reduction of Size of an Optimization Problem. 14.3 Fast Reanalysis Techniques. 14.4 Derivatives of Static Displacements and Stresses. 14.5 Derivatives of Eigenvalues and Eigenvectors. 14.6 Derivatives of Transient Response. 14.7 Sensitivity of Optimum Solution to Problem Parameters. 14.8 Multilevel Optimization. 14.9 Parallel Processing. 14.10 Multiobjective Optimization. 14.11 Solution of Multiobjective Problems Using MATLAB. References and Bibliography. Review Questions. Problems. A Convex and Concave Functions. B Some Computational Aspects of Optimization. B.1 Choice of Method. B.2 Comparison of Unconstrained Methods. B.3 Comparison of Constrained Methods. B.4 Availability of Computer Programs. B.5 Scaling of Design Variables and Constraints. B.6 Computer Programs for Modern Methods of Optimization. References and Bibliography. C Introduction to MATLAB(R) . C.1 Features and Special Characters. C.2 Defining Matrices in MATLAB. C.3 CREATING m-FILES. C.4 Optimization Toolbox. Answers to Selected Problems. Index .

3,099 citations

••

TL;DR: In this paper, the authors propose an approach that attempts to make this trade-off more attractive by flexibly adjusting the level of conservatism of the robust solutions in terms of probabilistic bounds of constraint violations.

Abstract: A robust approach to solving linear optimization problems with uncertain data was proposed in the early 1970s and has recently been extensively studied and extended. Under this approach, we are willing to accept a suboptimal solution for the nominal values of the data in order to ensure that the solution remains feasible and near optimal when the data changes. A concern with such an approach is that it might be too conservative. In this paper, we propose an approach that attempts to make this trade-off more attractive; that is, we investigate ways to decrease what we call the price of robustness. In particular, we flexibly adjust the level of conservatism of the robust solutions in terms of probabilistic bounds of constraint violations. An attractive aspect of our method is that the new robust formulation is also a linear optimization problem. Thus we naturally extend our methods to discrete optimization problems in a tractable way. We report numerical results for a portfolio optimization problem, a knapsack problem, and a problem from the Net Lib library.

2,874 citations