scispace - formally typeset
Search or ask a question
Topic

Stochastic programming

About: Stochastic programming is a research topic. Over the lifetime, 12343 publications have been published within this topic receiving 421049 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a scenario-based multistage stochastic programming model is developed for the management of the Highland Lakes by the Lower Colorado River Authority (LCRA) in Central Texas.

96 citations

Journal ArticleDOI
TL;DR: A stochastic programming approach to solve a multiperiod optimal power flow problem under renewable generation uncertainty and results show that substantial benefits in terms of redispatch costs can be achieved with the help of demand side flexibilities.
Abstract: Renewable energy sources such as wind and solar have received much attention in recent years, and large amounts of renewable generation are being integrated into electricity networks. A fundamental challenge in power system operation is to handle the intermittent nature of renewable generation. In this paper, we present a stochastic programming approach to solve a multiperiod optimal power flow problem under renewable generation uncertainty. The proposed approach consists of two stages. In the first stage, operating points of the conventional power plants are determined. The second stage realizes generation from the renewable resources and optimally accommodates it by relying on the demand-side flexibilities. The proposed model is illustrated on a 4-bus and a 39-bus system. Numerical results show that substantial benefits in terms of redispatch costs can be achieved with the help of demand side flexibilities. The proposed approach is tested on the standard IEEE test networks of up to 300 buses and for a wide variety of scenarios for renewable generation.

96 citations

Journal ArticleDOI
TL;DR: A canonical modeling framework for sequential, stochastic optimization (control) problems, and a hybrid that illustrates the ability to combine the strengths of multiple policy classes is provided.
Abstract: In Part I of this tutorial, we provided a canonical modeling framework for sequential, stochastic optimization (control) problems. A major feature of this framework is a clear separation of the process of modeling a problem, versus the design of policies to solve the problem. In Part II, we provide additional discussion behind some of the more subtle concepts such as the construction of a state variable. We illustrate the modeling process using an energy storage problem. We then create five variations of this problem designed to bring out the features of the different policies. The first four of these problems demonstrate that each of the four classes of policies is best for particular problem characteristics. The fifth policy is a hybrid that illustrates the ability to combine the strengths of multiple policy classes.

96 citations

Journal ArticleDOI
TL;DR: A novel data-driven stochastic robust optimization (DDSRO) framework is proposed for optimization under uncertainty leveraging labeled multi-class uncertainty data to solve the resulting multi-level optimization problem efficiently.

96 citations

Journal ArticleDOI
TL;DR: Results show that the presented approach can be considered as an efficient tool for optimal energy exchange optimization of MGs.
Abstract: The inherent volatility and unpredictable nature of renewable generations and load demand pose considerable challenges for energy exchange optimization of microgrids (MG). To address these challenges, this paper proposes a new risk-based multi-objective energy exchange optimization for networked MGs from economic and reliability standpoints under load consumption and renewable power generation uncertainties. In so doing, three various risk-based strategies are distinguished by using conditional value at risk (CVaR) approach. The proposed model is specified as a two-distinct objective function. The first function minimizes the operation and maintenance costs, cost of power transaction between upstream network and MGs as well as power loss cost, whereas the second function minimizes the energy not supplied (ENS) value. Furthermore, the stochastic scenario-based approach is incorporated into the approach in order to handle the uncertainty. Also, Kantorovich distance scenario reduction method has been implemented to reduce the computational burden. Finally, non-dominated sorting genetic algorithm (NSGAII) is applied to minimize the objective functions simultaneously and the best solution is extracted by fuzzy satisfying method with respect to risk-based strategies. To indicate the performance of the proposed model, it is performed on the modified IEEE 33-bus distribution system and the obtained results show that the presented approach can be considered as an efficient tool for optimal energy exchange optimization of MGs.

96 citations


Network Information
Related Topics (5)
Optimization problem
96.4K papers, 2.1M citations
86% related
Scheduling (computing)
78.6K papers, 1.3M citations
85% related
Optimal control
68K papers, 1.2M citations
84% related
Supply chain
84.1K papers, 1.7M citations
83% related
Markov chain
51.9K papers, 1.3M citations
79% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023175
2022423
2021526
2020598
2019578
2018532