scispace - formally typeset
Search or ask a question
Topic

Stratosphere

About: Stratosphere is a research topic. Over the lifetime, 15746 publications have been published within this topic receiving 586689 citations.


Papers
More filters
01 Jan 2006
TL;DR: In this article, the authors present a model for the chemistry of the Troposphere of the atmosphere and describe the properties of the Atmospheric Aqueous phase of single aerosol particles.
Abstract: 1 The Atmosphere. 2 Atmospheric Trace Constituents. 3 Chemical Kinetics. 4 Atmospheric Radiation and Photochemistry. 5 Chemistry of the Stratosphere. 6 Chemistry of the Troposphere. 7 Chemistry of the Atmospheric Aqueous Phase. 8 Properties of the Atmospheric Aerosol. 9 Dynamics of Single Aerosol Particles. 10 Thermodynamics of Aerosols. 11 Nucleation. 12 Mass Transfer Aspects of Atmospheric Chemistry. 13 Dynamics of Aerosol Populations. 14 Organic Atmospheric Aerosols. 15 Interaction of Aerosols with Radiation. 16 Meteorology of the Local Scale. 17 Cloud Physics. 18 Atmospheric Diffusion. 19 Dry Deposition. 20 Wet Deposition. 21 General Circulation of the Atmosphere. 22 Global Cycles: Sulfur and Carbon. 23 Climate and Chemical Composition of the Atmosphere. 24 Aerosols and Climate. 25 Atmospheric Chemical Transport Models. 26 Statistical Models.

11,157 citations

Book
01 Jan 1997
TL;DR: In this paper, the authors present a model for the chemistry of the Troposphere of the atmosphere and describe the properties of the Atmospheric Aqueous phase of single aerosol particles.
Abstract: 1 The Atmosphere. 2 Atmospheric Trace Constituents. 3 Chemical Kinetics. 4 Atmospheric Radiation and Photochemistry. 5 Chemistry of the Stratosphere. 6 Chemistry of the Troposphere. 7 Chemistry of the Atmospheric Aqueous Phase. 8 Properties of the Atmospheric Aerosol. 9 Dynamics of Single Aerosol Particles. 10 Thermodynamics of Aerosols. 11 Nucleation. 12 Mass Transfer Aspects of Atmospheric Chemistry. 13 Dynamics of Aerosol Populations. 14 Organic Atmospheric Aerosols. 15 Interaction of Aerosols with Radiation. 16 Meteorology of the Local Scale. 17 Cloud Physics. 18 Atmospheric Diffusion. 19 Dry Deposition. 20 Wet Deposition. 21 General Circulation of the Atmosphere. 22 Global Cycles: Sulfur and Carbon. 23 Climate and Chemical Composition of the Atmosphere. 24 Aerosols and Climate. 25 Atmospheric Chemical Transport Models. 26 Statistical Models.

9,021 citations

Journal ArticleDOI
TL;DR: In this article, the authors compared the structure and seasonality of the Southern Hemisphere (SH) annular mode and the Northern Hemisphere (NH) mode, referred to as the Arctic Oscillation (AO), based on data from the National Centers for Environmental Prediction and National Center for Atmospheric Research reanalysis and supplementary datasets.
Abstract: The leading modes of variability of the extratropical circulation in both hemispheres are characterized by deep, zonally symmetric or ‘‘annular’’ structures, with geopotential height perturbations of opposing signs in the polar cap region and in the surrounding zonal ring centered near 458 latitude. The structure and dynamics of the Southern Hemisphere (SH) annular mode have been extensively documented, whereas the existence of a Northern Hemisphere (NH) mode, herein referred to as the Arctic Oscillation (AO), has only recently been recognized. Like the SH mode, the AO can be defined as the leading empirical orthogonal function of the sea level pressure field or of the zonally symmetric geopotential height or zonal wind fields. In this paper the structure and seasonality of the NH and SH modes are compared based on data from the National Centers for Environmental Prediction‐National Center for Atmospheric Research reanalysis and supplementary datasets. The structures of the NH and SH annular modes are shown to be remarkably similar, not only in the zonally averaged geopotential height and zonal wind fields, but in the mean meridional circulations as well. Both exist year-round in the troposphere, but they amplify with height upward into the stratosphere during those seasons in which the strength of the zonal flow is conducive to strong planetary wave‐mean flow interaction: midwinter in the NH and late spring in the SH. During these ‘‘active seasons,’’ the annular modes modulate the strength of the Lagrangian mean circulation in the lower stratosphere, total column ozone and tropopause height over mid- and high latitudes, and the strength of the trade winds of their respective hemispheres. The NH mode also contains an embedded planetary wave signature with expressions in surface air temperature, precipitation, total column ozone, and tropopause height. It is argued that the horizontal temperature advection by the perturbed zonal-mean zonal wind field in the lower troposphere is instrumental in forcing this pattern. A companion paper documents the striking resemblance between the structure of the annular modes and observed climate trends over the past few decades.

3,278 citations

Journal ArticleDOI
01 May 1985-Nature
TL;DR: In this article, it was shown that the very low temperatures which prevail from midwinter until several weeks after the spring equinox make the Antarctic stratosphere uniquely sensitive to growth of inorganic chlorine, ClX, primarily by the effect of this growth on the NO2/NO ratio.
Abstract: Recent attempts1,2 to consolidate assessments of the effect of human activities on stratospheric ozone (O3) using one-dimensional models for 30° N have suggested that perturbations of total O3 will remain small for at least the next decade. Results from such models are often accepted by default as global estimates3. The inadequacy of this approach is here made evident by observations that the spring values of total O3 in Antarctica have now fallen considerably. The circulation in the lower stratosphere is apparently unchanged, and possible chemical causes must be considered. We suggest that the very low temperatures which prevail from midwinter until several weeks after the spring equinox make the Antarctic stratosphere uniquely sensitive to growth of inorganic chlorine, ClX, primarily by the effect of this growth on the NO2/NO ratio. This, with the height distribution of UV irradiation peculiar to the polar stratosphere, could account for the O3 losses observed.

3,131 citations

Journal ArticleDOI
TL;DR: In this paper, the MSIS-86 empirical model has been extended into the mesosphere and lower atmosphere to provide a single analytic model for calculating temperature and density profiles representative of the climatological average for various geophysical conditions.
Abstract: The MSIS-86 empirical model has been revised in the lower thermosphere and extended into the mesosphere and lower atmosphere to provide a single analytic model for calculating temperature and density profiles representative of the climatological average for various geophysical conditions. Tabulations from the Handbook for MAP 16 are the primary guide for the lower atmosphere and are supplemented by historical rocket and incoherent scatter data in the upper mesosphere and lower thermosphere. Low-order spherical harmonics and Fourier series are used to describe the major variations throughout the atmosphere including latitude, annual, semiannual, and simplified local time and longitude variations. While month to month details cannot be completely represented, lower atmosphere temperature data are fit to an overall standard deviation of 3 K and pressure to 2%. Comparison with rocket and other data indicates that the model represents current knowledge of the climatological average reasonably well, although there is some conflict as to details near the mesopause.

2,359 citations


Network Information
Related Topics (5)
Climate model
22.2K papers, 1.1M citations
91% related
Solar wind
26.1K papers, 780.2K citations
90% related
Atmosphere
30.8K papers, 737.8K citations
90% related
Aerosol
33.8K papers, 1.1M citations
86% related
Sea surface temperature
21.2K papers, 874.7K citations
85% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023634
20221,267
2021343
2020369
2019355
2018355