scispace - formally typeset
Search or ask a question
Topic

Stream power

About: Stream power is a research topic. Over the lifetime, 1135 publications have been published within this topic receiving 51324 citations.


Papers
More filters
Journal ArticleDOI
01 Mar 2012-Catena
TL;DR: In this paper, the authors investigated the spatial variability of channel bed roughness in rills and gullies using an approach based on the modified Leopold and Maddock's relationship.
Abstract: When overland flow concentrates rill and gully channels can be formed if a series of thresholds are exceeded. These thresholds are more or less explicitly linked to the erosion resistance of the topsoil. Moreover, flow velocity and channel width depend on total flow discharge. More recently also bed roughness in eroding channels has been attributed to the eroding effect of flow discharge while channel width was shown to be the result of the interplay between erosion resistance of the topsoil and flow discharge (see channel junction approach, Torri et al., 2006), which could be described by a modified Leopold and Maddock's relationship. The objective of this paper is to investigate the spatial variability of channel bed roughness in rills and gullies using an approach based on these findings. Field data confirm the various aspects reported so far. Hence these were used to develop a new equation allowing one to predict bed roughness in eroding rill and gully channels. Each of the new aspects introduced into the channel width–flow discharge equation by the channel junction approach is discussed and verified with new data. The validity of this approach is tested against channel data from Mars. Finally, an equation predicting bed roughness and based on stream power is developed and compared with measured rill and gully bed roughness successfully, confirming that 1) bed roughness, if generated by concentrated flow, increases with stream power; 2) channel width, local bed slope, topsoil cohesion at saturation, and grain size are all important factors controlling channel bed roughness; and 3) these variables as well as soil characteristics, all measurable in the field after a rill or gully forming event, are sufficient to determine channel bed roughness. Therefore one may expect that bed roughness of an eroded channel (and consequently hydraulic roughness or friction) will generally increase with bed gradient, erosion resistance of the soil and grain size, following a logic which is best expressed by the final equations described in this paper.

45 citations

Journal ArticleDOI
TL;DR: In this article, the authors derived a scaling relation that describes how externally imposed changes in either Qb or Q can be accommodated by changes in the channel configuration, described by the energy gradient, mean flow depth, characteristic grain size and a parameter describing the effect of bed surface structures on grain entrainment.
Abstract: The concept of stream channel grade – according to which a stream channel reach will adjust its gradient, S, in order to transport the imposed sediment load having magnitude Qb and characteristic grain size Db, with the available discharge Q (Mackin, 1948, Geological Society of America Bulletin59: 463–512; Lane, 1955, American Society of Civil Engineers, Proceedings81: 1–17) is one of the most influential ideas in fluvial geomorphology. Herein, we derive a scaling relation that describes how externally imposed changes in either Qb or Q can be accommodated by changes in the channel configuration, described by the energy gradient, mean flow depth, characteristic grain size and a parameter describing the effect of bed surface structures on grain entrainment. One version of this scaling relation is based on the dimensionless bed material transport parameter (W*) presented by Parker and Klingeman (1982, Water Resources Research18: 1409–1423). An equivalent version is based on a new dimensionless transport parameter (E*) using dimensionless unit stream power. This version is nearly identical to the relation based on W*, except that it is independent of flow resistance. Both versions of the scaling relation are directly comparable to Lane's original relation. In order to generate this stream power-based scaling relation, we derived an empirical transport function relation relating E* to dimensionless stream power using data from a wide range of stable, bed load-dominated channels: the form of that transport function is based on the understanding that, while grain entrainment is related to the forces acting on the bed (described by dimensionless shear stress), sediment transport rate is related to the transfer of momentum from the fluid to the bed material (described by dimensionless stream power). Copyright © 2010 John Wiley & Sons, Ltd.

45 citations

Journal ArticleDOI
TL;DR: In this article, a sediment fingerprinting approach using geochemical tracers was used to elucidate the sub-recent sediment dynamics in the 264km 2 Bugduz River catchment in SW Turkey.

44 citations

Journal ArticleDOI
01 Feb 2013-Catena
TL;DR: In this article, Abrahams et al. evaluated the suitability of stream flow functions to overland flow conditions and derived a new function based on unit stream power by dimensional analysis.
Abstract: Soil erosion is a serious global problem requiring effective modeling for accurate assessment of sensitive areas and related erosion rates. The outcome of soil erosion models depends strongly on the estimation of sediment transport capacity. In most of the existing spatially distributed soil erosion models sediment transport capacity of overland flow is often estimated using stream flow transport capacity functions. The applicability of stream flow functions to overland flow conditions is questionable because hydraulic conditions like flow depth, slope steepness and surface roughness under overland flow are substantially different from stream flow conditions. Hence, the main objectives of this study were i) to check the suitability of five existing well known and widely used transport capacity functions (Yalin 1963; Low, 1989; Govers, 1990; modified Engelund and Hansen (Smith et al., 1995); and Abrahams et al., 2001) for use under overland flow conditions, and ii) to derive a new function based on unit stream power by dimensional analysis to quantify transport capacity for overland flow. To accomplish the objectives, experiments in a 3.0 m long and 0.5 m wide flume were carried out using four different sands (0.230, 0.536, 0.719, and 1.022 mm). The unit discharges used for experimentation ranged from 0.07 to 2.07 x 10(-3) m(2) s(-1) and slopes ranged from 5.2 to 17.6%. In this study, none of the predictions with the existing functions was in good agreement with measured results over the whole range of experimental conditions, especially at low flow intensities. The percentages of observations in which the discrepancy ratio ranged between 0.5 and 2.0 were: 65% (Yalin 1963), 74% (Low, 1989), 57% (Govers, 1990), 54% (modified Engelund and Hansen (Smith et al., 1995)), and 25% (Abrahams et al., 2001). The results showed that the selected functions reasonably estimate transport capacities only under those ranges of conditions for which they were formulated. Although the excess.shear stress concept based function (i.e. Low's function) produced excellent results, the degree of accuracy of the results varied substantially with grain size (P.O.(0.5-2.0): 53-100%). In contrast, the performance of the Govers' function, which is based on the unit stream power concept, was quite similar for all the selected sands (P.O.(0.5-2.0): 50-63%). Based on the unit stream power concept, a new function for low flow intensities was derived by dimensional analysis using the data gained from the flume experiments. (c) 2012 Elsevier B.V. All rights reserved.

44 citations

Journal ArticleDOI
30 Dec 2005-Catena
TL;DR: In this article, three mathematical models for the estimate of sediment yield, due to soil and stream erosion, at the outlet of a basin are presented, each model consists of three submodels: a rainfall-runoff submodel, a soil erosion submodel and a sediment transport submodel for streams.
Abstract: In this study, three mathematical models for the estimate of sediment yield, due to soil and stream erosion, at the outlet of a basin are presented. Each model consists of three submodels: a rainfall-runoff submodel, a soil erosion submodel and a sediment transport submodel for streams. The rainfall-runoff and the stream sediment transport submodels are identical in the three mathematical models. The rainfall-runoff submodel that is used for the computation of the runoff in a sub-basin is a simplified water balance model for the soil root zone. For the estimate of soil erosion in a sub-basin, three different submodels are used alternatively, owing to the fact that erosion or sediment yield data are not available. The soil erosion submodels are (a) a modified form of the classical Universal Soil Loss Equation (USLE, [Foster, G.R., Meyer, L.D., Onstad, C.A., 1977. A runoff erosivity factor and variable slope length exponents for soil loss estimates. Transactions of the ASAE, 20 (4), 683–687]) taking into account both the rainfall erosion and the runoff erosion, (b) the relationships of Poesen [Poesen, J., 1985. An improved splash transport model. Zeitschrift fur Geomorphologie, 29, 193–211] quantifying the splash detachment, as well as the upslope and downslope splash transport, (c) the relationships of Schmidt [Schmidt, J., 1992. Predicting the sediment yield from agricultural land using a new soil erosion model. Proceedings of the 5th International Symposium on River Sedimentation. Karlsruhe, Germany, pp. 1045–1051] including the momentum flux exerted by the droplets and the momentum flux exerted by the runoff. The sediment transport submodel for streams aims to estimate the sediment yield at the outlet of a sub-basin. This quantity results by comparing the available sediment amount in the main stream of a sub-basin with the sediment transport capacity by stream flow, which is computed by the relationships of Yang and Stall [Yang, C.T., Stall, J.B., 1976. Applicability of unit stream power equation. Journal of the Hydraulics Division, ASCE, 102, 559–568]. The mathematical models were applied to the basin of Kompsatos River, in northeastern Greece, with an area of about 565 km2. The whole basin was divided into 18 natural sub-basins for more precise calculations. Monthly rainfall data were available for 27 years (1966–1992); therefore, the calculations were performed on a monthly basis. The deviation between the three mean annual values of sediment yield at the basin outlet, for 27 years, resulting from the three mathematical models is relatively small.

44 citations


Network Information
Related Topics (5)
Surface runoff
45.1K papers, 1.1M citations
87% related
Sediment
48.7K papers, 1.2M citations
82% related
Groundwater
59.3K papers, 1M citations
82% related
Glacial period
27.3K papers, 1.1M citations
81% related
Vegetation
49.2K papers, 1.4M citations
78% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202351
2022103
202154
202067
201952
201847