Topic

# Streamlines, streaklines, and pathlines

About: Streamlines, streaklines, and pathlines is a(n) research topic. Over the lifetime, 6118 publication(s) have been published within this topic receiving 133556 citation(s).

##### Papers published on a yearly basis

##### Papers

More filters

••

Abstract: It is shown that a sphere moving through a very viscous liquid with velocity V relative to a uniform simple shear, the translation velocity being parallel to the streamlines and measured relative to the streamline through the centre, experiences a lift force 81·2μVa2k½/v½ + smaller terms perpendicular to the flow direction, which acts to deflect the particle towards the streamlines moving in the direction opposite to V. Here, a denotes the radius of the sphere, κ the magnitude of the velocity gradient, and μ and v the viscosity and kinematic viscosity, respectively. The relevance of the result to the observations by Segree & Silberberg (1962) of small spheres in Poiseuille flow is discussed briefly. Comments are also made about the problem of a sphere in a parabolic velocity profile and the functional dependence of the lift upon the parameters is obtained.

2,662 citations

••

Abstract: The geometry of solution trajectories for three first‐order coupled linear differential equations can be related and classified using three matrix invariants. This provides a generalized approach to the classification of elementary three‐dimensional flow patterns defined by instantaneous streamlines for flow at and away from no‐slip boundaries for both compressible and incompressible flow. Although the attention of this paper is on the velocity field and its associated deformation tensor, the results are valid for any smooth three‐dimensional vector field. For example, there may be situations where it is appropriate to work in terms of the vorticity field or pressure gradient field. In any case, it is expected that the results presented here will be of use in the interpretation of complex flow field data.

1,556 citations

01 Dec 1988

Abstract: Recent studies of turbulent shear flows have shown that many of their important kinematical and dynamical properties can be more clearly understood by describing the flows in terms of individual events or streamline patterns These events or flow regions are studied because they are associated with relatively large contributions to certain average properties of the flow, for example kinetic energy, Reynolds stress, or to particular processes in the flow, such as mixing and chemical reactions, which may be concentrated at locations where streamlines converge for fast chemical reactions (referred to as convergence or C regions), or in recirculating eddying regions for slow chemical reactions The aim of this project was to use the numerical simulations to develop suitable criteria for defining these eddying or vortical zones The C and streaming (S) zones were defined in order to define the whole flow field It is concluded that homogeneous and sheared turbulent flow fields are made up of characteristic flow zones: eddy, C, and S zones A set of objective criteria were found which describe regions in which the streamlines circulate, converge or diverge, and form high streams of high velocity flow

1,481 citations

••

TL;DR: It is concluded that in the human carotid bifurcation, regions of moderate to high shear stress, where flow remains unidirectional and axially aligned, are relatively spared of intimal thickening.

Abstract: The distribution of nonstenosing, asymptomatic intimal plaques in 12 adult human carotid bifurcations obtained at autopsy was compared with the distribution of flow streamline patterns, flow velocity profiles, and shear stresses in corresponding scale models. The postmortem specimens were fixed while distended to restore normal in vivo length, diameter, and configuration. Angiograms were used to measure branch angles and diameters, and transverse histological sections were studied at five standard sampling levels. Intimal thickness was determined at 15 degrees intervals around the circumference of the vessel sections from contour tracings of images projected onto a digitizing plate. In the models, laser-Doppler anemometry was used to determine flow velocity profiles and shear stresses at levels corresponding to the standard specimen sampling sites under conditions of steady flow at Reynolds numbers of 400, 800, and 1200, and flow patterns were visualized by hydrogen bubble and dye-washout techniques. Intimal thickening was greatest and consistently eccentric in the carotid sinus. With the center of the flow divider as the 0 degree index point, mid-sinus sections showed minimum intimal thickness (0.05 +/- 0.02 mm) within 15 degrees of the index point, while maximum thickness (0.9 +/- 0.1 mm) occurred at 161 +/- 16 degrees, i.e., on the outer wall opposite the flow divider. Where the intima was thinnest, along the inner wall, flow streamlines in the model remain axially aligned and unidirectional, with velocity maxima shifted toward the flow divider apex. Wall shear stress along the inner wall ranged from 31 to 600 dynes/cm2 depending on the Reynolds number. Where the intima was thickest, along the outer wall opposite the flow divider apex, the pattern of flow was complex and included a region of separation and reversal of axial flow as well as the development of counter-rotating helical trajectories. Wall shear stress along the outer wall ranged from 0 to -6 dynes/cm2. Intimal thickening at the common carotid and distal internal carotid levels of section was minimal and was distributed uniformly about the circumference. We conclude that in the human carotid bifurcation, regions of moderate to high shear stress, where flow remains unidirectional and axially aligned, are relatively spared of intimal thickening. Intimal thickening and atherosclerosis develop largely in regions of relatively low wall shear stress, flow separation, and departure from axially aligned, unidirectional flow. Similar quantitative evaluations of other atherosclerosis-prone locations and corresponding flow profile studies in geometrically accurate models may reveal which of these hemodynamic conditions are most consistently associated with the development of intimal disease.

1,408 citations

••

TL;DR: The ability to differentially order particles of different sizes, continuously, at high rates, and without external forces in microchannels is expected to have a broad range of applications in continuous bioparticle separation, high-throughput cytometry, and large-scale filtration systems.

Abstract: Under laminar flow conditions, when no external forces are applied, particles are generally thought to follow fluid streamlines. Contrary to this perspective, we observe that flowing particles migrate across streamlines in a continuous, predictable, and accurate manner in microchannels experiencing laminar flows. The migration is attributed to lift forces on particles that are observed when inertial aspects of the flow become significant. We identified symmetric and asymmetric channel geometries that provide additional inertial forces that bias particular equilibrium positions to create continuous streams of ordered particles precisely positioned in three spatial dimensions. We were able to order particles laterally, within the transverse plane of the channel, with >80-nm accuracy, and longitudinally, in regular chains along the direction of flow. A fourth dimension of rotational alignment was observed for discoidal red blood cells. Unexpectedly, ordering appears to be independent of particle buoyant direction, suggesting only minor centrifugal contributions. Theoretical analysis indicates the physical principles are operational over a range of channel and particle length scales. The ability to differentially order particles of different sizes, continuously, at high rates, and without external forces in microchannels is expected to have a broad range of applications in continuous bioparticle separation, high-throughput cytometry, and large-scale filtration systems.

1,336 citations