scispace - formally typeset
Search or ask a question
Topic

Strength of a graph

About: Strength of a graph is a research topic. Over the lifetime, 3607 publications have been published within this topic receiving 127475 citations.


Papers
More filters
Book
01 Jan 1976
TL;DR: In this paper, the authors present Graph Theory with Applications: Graph theory with applications, a collection of applications of graph theory in the field of Operational Research and Management. Journal of the Operational research Society: Vol. 28, Volume 28, issue 1, pp. 237-238.
Abstract: (1977). Graph Theory with Applications. Journal of the Operational Research Society: Vol. 28, Volume 28, issue 1, pp. 237-238.

7,497 citations

Journal ArticleDOI
TL;DR: This work presents a new coarsening heuristic (called heavy-edge heuristic) for which the size of the partition of the coarse graph is within a small factor of theSize of the final partition obtained after multilevel refinement, and presents a much faster variation of the Kernighan--Lin (KL) algorithm for refining during uncoarsening.
Abstract: Recently, a number of researchers have investigated a class of graph partitioning algorithms that reduce the size of the graph by collapsing vertices and edges, partition the smaller graph, and then uncoarsen it to construct a partition for the original graph [Bui and Jones, Proc. of the 6th SIAM Conference on Parallel Processing for Scientific Computing, 1993, 445--452; Hendrickson and Leland, A Multilevel Algorithm for Partitioning Graphs, Tech. report SAND 93-1301, Sandia National Laboratories, Albuquerque, NM, 1993]. From the early work it was clear that multilevel techniques held great promise; however, it was not known if they can be made to consistently produce high quality partitions for graphs arising in a wide range of application domains. We investigate the effectiveness of many different choices for all three phases: coarsening, partition of the coarsest graph, and refinement. In particular, we present a new coarsening heuristic (called heavy-edge heuristic) for which the size of the partition of the coarse graph is within a small factor of the size of the final partition obtained after multilevel refinement. We also present a much faster variation of the Kernighan--Lin (KL) algorithm for refining during uncoarsening. We test our scheme on a large number of graphs arising in various domains including finite element methods, linear programming, VLSI, and transportation. Our experiments show that our scheme produces partitions that are consistently better than those produced by spectral partitioning schemes in substantially smaller time. Also, when our scheme is used to compute fill-reducing orderings for sparse matrices, it produces orderings that have substantially smaller fill than the widely used multiple minimum degree algorithm.

5,629 citations

Journal ArticleDOI
01 Jan 2004
TL;DR: This work gives a precise characterization of what energy functions can be minimized using graph cuts, among the energy functions that can be written as a sum of terms containing three or fewer binary variables.
Abstract: In the last few years, several new algorithms based on graph cuts have been developed to solve energy minimization problems in computer vision. Each of these techniques constructs a graph such that the minimum cut on the graph also minimizes the energy. Yet, because these graph constructions are complex and highly specific to a particular energy function, graph cuts have seen limited application to date. In this paper, we give a characterization of the energy functions that can be minimized by graph cuts. Our results are restricted to functions of binary variables. However, our work generalizes many previous constructions and is easily applicable to vision problems that involve large numbers of labels, such as stereo, motion, image restoration, and scene reconstruction. We give a precise characterization of what energy functions can be minimized using graph cuts, among the energy functions that can be written as a sum of terms containing three or fewer binary variables. We also provide a general-purpose construction to minimize such an energy function. Finally, we give a necessary condition for any energy function of binary variables to be minimized by graph cuts. Researchers who are considering the use of graph cuts to optimize a particular energy function can use our results to determine if this is possible and then follow our construction to create the appropriate graph. A software implementation is freely available.

3,079 citations

Book
01 Jan 1978

1,955 citations

Journal ArticleDOI
TL;DR: This paper presents and study a class of graph partitioning algorithms that reduces the size of the graph by collapsing vertices and edges, they find ak-way partitioning of the smaller graph, and then they uncoarsen and refine it to construct ak- way partitioning for the original graph.

1,715 citations


Network Information
Related Topics (5)
Time complexity
36K papers, 879.5K citations
89% related
Graph theory
20.8K papers, 691.4K citations
89% related
Approximation algorithm
23.9K papers, 654.3K citations
89% related
Graph (abstract data type)
69.9K papers, 1.2M citations
87% related
Data structure
28.1K papers, 608.6K citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20234
20227
20217
20205
20198
201823