scispace - formally typeset
Search or ask a question
Topic

Streptozotocin

About: Streptozotocin is a research topic. Over the lifetime, 14924 publications have been published within this topic receiving 378545 citations. The topic is also known as: -nitrosomethylharnstoff & Zanosar.


Papers
More filters
Journal Article
TL;DR: The cytotoxic action of both these diabetogenic agents is mediated by reactive oxygen species, however, the source of their generation is different in the case of alloxan and streptozotocin.
Abstract: Alloxan and streptozotocin are widely used to induce experimental diabetes in animals. The mechanism of their action in B cells of the pancreas has been intensively investigated and now is quite well understood. The cytotoxic action of both these diabetogenic agents is mediated by reactive oxygen species, however, the source of their generation is different in the case of alloxan and streptozotocin. Alloxan and the product of its reduction, dialuric acid, establish a redox cycle with the formation of superoxide radicals. These radicals undergo dismutation to hydrogen peroxide. Thereafter highly reactive hydroxyl radicals are formed by the Fenton reaction. The action of reactive oxygen species with a simultaneous massive increase in cytosolic calcium concentration causes rapid destruction of B cells. Streptozotocin enters the B cell via a glucose transporter (GLUT2) and causes alkylation of DNA. DNA damage induces activation of poly ADP-ribosylation, a process that is more important for the diabetogenicity of streptozotocin than DNA damage itself. Poly ADP-ribosylation leads to depletion of cellular NAD+ and ATP. Enhanced ATP dephosphorylation after streptozotocin treatment supplies a substrate for xanthine oxidase resulting in the formation of superoxide radicals. Consequently, hydrogen peroxide and hydroxyl radicals are also generated. Furthermore, streptozotocin liberates toxic amounts of nitric oxide that inhibits aconitase activity and participates in DNA damage. As a result of the streptozotocin action, B cells undergo the destruction by necrosis.

2,884 citations

Journal ArticleDOI
TL;DR: The targeting of mitochondrial DNA, thereby impairing the signalling function of beta cell mitochondrial metabolism, also explains how streptozotocin is able to inhibit glucose-induced insulin secretion, causing a state of insulin-dependent ‘alloxan diabetes’.
Abstract: Alloxan and streptozotocin are toxic glucose analogues that preferentially accumulate in pancreatic beta cells via the GLUT2 glucose transporter. In the presence of intracellular thiols, especially glutathione, alloxan generates reactive oxygen species (ROS) in a cyclic redox reaction with its reduction product, dialuric acid. Autoxidation of dialuric acid generates superoxide radicals, hydrogen peroxide and, in a final iron-catalysed reaction step, hydroxyl radicals. These hydroxyl radicals are ultimately responsible for the death of the beta cells, which have a particularly low antioxidative defence capacity, and the ensuing state of insulin-dependent 'alloxan diabetes'. As a thiol reagent, alloxan also selectively inhibits glucose-induced insulin secretion through its ability to inhibit the beta cell glucose sensor glucokinase. Following its uptake into the beta cells, streptozotocin is split into its glucose and methylnitrosourea moiety. Owing to its alkylating properties, the latter modifies biological macromolecules, fragments DNA and destroys the beta cells, causing a state of insulin-dependent diabetes. The targeting of mitochondrial DNA, thereby impairing the signalling function of beta cell mitochondrial metabolism, also explains how streptozotocin is able to inhibit glucose-induced insulin secretion.

1,846 citations

Journal ArticleDOI
TL;DR: The present study represents that the combination of HFD-fed and low-dose STZ-treated rat serves as an alternative animal model for type 2 diabetes simulating the human syndrome that is also suitable for testing anti-diabetic agents for the treatment of type 1 diabetes.

1,573 citations

Journal ArticleDOI
TL;DR: This is the first quantitative report of an increase in neural cell apoptosis in the retina during diabetes, and indicates that neurodegeneration is an important component of diabetic retinopathy.
Abstract: This study determined whether retinal degeneration during diabetes includes retinal neural cell apoptosis. Image analysis of retinal sections from streptozotocin (STZ) diabetic rats after 7.5 months of STZ diabetes identified 22% and 14% reductions in the thickness of the inner plexiform and inner nuclear layers, respectively (P < 0. 001). The number of surviving ganglion cells was also reduced by 10% compared to controls (P < 0.001). In situ end labeling of DNA terminal dUTP nick end labeling (TUNEL) identified a 10-fold increase in the frequency of retinal apoptosis in whole-mounted rat retinas after 1, 3, 6, and 12 months of diabetes (P < 0.001, P < 0. 001, P < 0.01, and P < 0.01, respectively). Most TUNEL-positive cells were not associated with blood vessels and did not colocalize with the endothelial cell-specific antigen, von Willebrand factor. Insulin implants significantly reduced the number of TUNEL-positive cells (P < 0.05). The number of TUNEL-positive cells was also increased in retinas from humans with diabetes. These data indicate that retinal neural cell death occurs early in diabetes. This is the first quantitative report of an increase in neural cell apoptosis in the retina during diabetes, and indicates that neurodegeneration is an important component of diabetic retinopathy.

1,189 citations

Journal ArticleDOI
TL;DR: Not only are oxygen radicals involved in the cause of diabetes, they also appear to play a role in some of the complications seen in long-term treatment of diabetes.

1,136 citations


Network Information
Related Topics (5)
Insulin
124.2K papers, 5.1M citations
86% related
Diabetes mellitus
169.2K papers, 6M citations
85% related
Inflammation
76.4K papers, 4M citations
85% related
Apoptosis
115.4K papers, 4.8M citations
85% related
Protein kinase A
68.4K papers, 3.9M citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023627
20221,433
2021664
2020753
2019731
2018719