scispace - formally typeset
Search or ask a question
Topic

Stress concentration

About: Stress concentration is a research topic. Over the lifetime, 23250 publications have been published within this topic receiving 422911 citations.


Papers
More filters
Book
09 Apr 2007
TL;DR: In this article, the authors proposed a method to predict the lifetime of cracks in metal components based on the number of cracks and the amount of cracks formed by the crack propagation process.
Abstract: Foreword. Preface. Symbols and Abbreviations. 1 Introduction. 2 Basic Concepts of Metal Fatigue and Fracture in the Engineering Design Process. 2.1 Historical Overview. 2.2 Metal Fatigue, Crack Propagation and Service-Life Prediction: A Brief Introduction. 2.2.1 Fundamental Terms in Fatigue of Materials. 2.2.2 Fatigue-Life Prediction: Total-Life and Safe-Life Approach. 2.2.3 Fatigue-Life Prediction: Damage-Tolerant Approach. 2.2.4 Methods of Fatigue-Life Prediction at a Glance. 2.3 Basic Concepts of Technical Fracture Mechanics. 2.3.1 The K Concept of LEFM. 2.3.2 Crack-Tip Plasticity: Concepts of Plastic-Zone Size. 2.3.3 Crack-Tip Plasticity: The J Integral. 3 Experimental Approaches to Crack Propagation. 3.1 Mechanical Testing. 3.1.1 Testing Systems. 3.1.2 Specimen Geometries. 3.1.3 Local Strain Measurement: The ISDG Technique. 3.2 Crack-Propagation Measurements. 3.2.1 Potential-Drop Concepts and Fracture Mechanics Experiments. 3.2.2 In Situ Observation of the Crack Length. 3.3 Methods of Microstructural Analysis and Quantitative Characterization of Grain and Phase Boundaries. 3.3.1 Analytical SEM: Topography Contrast to Study Fracture Surfaces. 3.3.2 SEM Imaging by Backscattered Electrons and EBSD. 3.3.3 Evaluation of Kikuchi Patterns: Automated EBSD. 3.3.4 Orientation Analysis Using TEM and X-Ray Diffraction. 3.3.5 Mathematical and Graphical Description of Crystallographic Orientation Relationships. 3.3.6 Microstructure Characterization by TEM. 3.3.7 Further Methods to Characterize Mechanical Damage Mechanisms in Materials. 3.4 Reproducibility of Experimentally Studying the Mechanical Behavior of Materials. 4 Physical Metallurgy of the Deformation Behavior of Metals and Alloys. 4.1 Elastic Deformation. 4.2 Plastic Deformation by Dislocation Motion. 4.3 Activation of Slip Planes in Single- and Polycrystalline Materials. 4.4 Special Features of the Cyclic Deformation of Metallic Materials. 5 Initiation of Microcracks. 5.1 Crack Initiation: Definition and Significance. 5.1.1 Influence of Notches, Surface Treatment and Residual Stresses. 5.2 Influence of Microstructual Factors on the Initiation of Fatigue Cracks. 5.2.1 Crack Initiation at the Surface: General Remarks. 5.2.2 Crack Initiation at Inclusions and Pores. 5.2.3 Crack Initiation at Persistent Slip Bands. 5.3 Crack Initiation by Elastic Anisotropy. 5.3.1 Definition and Significance of Elastic Anisotropy. 5.3.2 Determination of Elastic Constants and Estimation of the Elastic Anisotropy. 5.3.3 FE Calculations of Elastic Anisotropy Stresses to Predict Crack Initiation Sites. 5.3.4 Analytical Calculation of Elastic Anisotropy Stresses. 5.4 Intercrystalline and Transcrystalline Crack Initiation. 5.4.1 Influence Parameters for Intercrystalline Crack Initiation. 5.4.2 Crack Initiation at Elevated Temperature and Environmental Effects. 5.4.3 Transgranular Crack Initiation. 5.5 Microstructurally Short Cracks and the Fatigue Limit. 5.6 Crack Initiation in Inhomogeneous Materials: Cellular Metals. 6 Crack Propagation: Microstructural Aspects. 6.1 Special Features of the Propagation of Microstructurally Short Fatigue Cracks. 6.1.1 Definition of Short and Long Cracks. 6.2 Transgranular Crack Propagation. 6.2.1 Crystallographic Crack Propagation: Interactions with Grain Boundaries. 6.2.2 Mode I Crack Propagation Governed by Cyclic Crack-Tip Blunting. 6.2.3 Influence of Grain Size, Second Phases and Precipitates on the Propagation Behavior of Microstructurally Short Fatigue Cracks. 6.3 Significance of Crack-Closure Effects and Overloads. 6.3.1 General Idea of Crack Closure During Fatigue-Crack Propagation. 6.3.2 Plasticity-Induced Crack Closure. 6.3.3 Influence of Overloads in Plasticity-Induced Crack Closure. 6.3.4 Roughness-Induced Crack Closure. 6.3.5 Oxide- and Transformation-Induced Crack Closure. 6.3.6 &delta K/K max Thresholds: An Alternative to the Crack-Closure Concept. 6.3.7 Development of Crack Closure in the Short Crack Regime. 6.4 Short and Long Fatigue Cracks: The Transition from Mode II to Mode I Crack Propagation. 6.4.1 Development of the Crack Aspect Ratio a/c. 6.4.2 Coalescence of Short Cracks. 6.5 Intercrystalline Crack Propagation at Elevated Temperatures: The Mechanism of Dynamic Embrittlement. 6.5.1 Environmentally Assisted Intercrystalline Crack Propagation in Nickel-Based Superalloys: Possible Mechanisms. 6.5.2 Mechanism of Dynamic Embrittlement as a Generic Phenomenon: Examples. 6.5.3 Oxygen-Induced Intercrystalline Crack Propagation: Dynamic Embrittlement of Alloy 718. 6.5.4 Increasing the Resistance to Intercrystalline Crack Propagation by Dynamic Embrittlement: Grain-Boundary Engineering. 7 Modeling Crack Propagation Accounting for Microstructural Features. 7.1 General Strategies of Fatigue Life Assessment. 7.2 Modeling of Short-Crack Propagation. 7.2.1 Short-Crack Models: An Overview. 7.2.2 Model of Navarro and de los Rios. 7.3 Numerical Modeling of Short-Crack Propagation by Means of a Boundary Element Approach. 7.3.1 Basic Modeling Concept. 7.3.2 Slip Transmission in Polycrystalline Microstructures. 7.3.3 Simulation of Microcrack Propagation in Synthetic Polycrystalline Microstructures. 7.3.4 Transition from Mode II to Mode I Crack Propagation. 7.3.5 Future Aspects of Applying the Boundary Element Method to Short-Fatigue-Crack Propagation. 7.4 Modeling Dwell-Time Cracking: A Grain-Boundary Diffusion Approach. 8 Concluding Remarks. References. Subject Index.

99 citations

Journal ArticleDOI
TL;DR: In this paper, the authors examined the crack growth behavior of structural steels by using the Unified Approach developed by the authors in this approach, fatigue requires two load parameters involving maximum stress intensity, Kmax, and stress intensity amplitude, △K For a fatigue crack to grow, both Kmax and △ K must exceed their respective threshold values Similarly, for any other crack growth rate, two limiting values, KMAX∗ and K�K∗ are required to enforce the growth rate The variation of these two critical values forms the crack trajectory map, which is defined by plotting

98 citations

Journal ArticleDOI
TL;DR: In this paper, a stress analysis was carried out in order to determine the local stress distribution around spherical particles in particulate filled composites, and the results were introduced into the criteria for micromechanical deformations and the conditions for the initiation of each mechanism were calculated.
Abstract: A stress analysis was carried out in order to determine the local stress distribution around spherical particles in particulate filled composites. The results were introduced into the criteria for micromechanical deformations and the conditions for the initiation of each mechanism were calculated. Results of the calculations have shown that shear yielding, and possibly crazing, do not depend on thermal stresses and adhesion, but debonding does. The results of the analysis were in accordance with literature and experimental data. The calculated debonding stresses correspond to the observed values, but both debonding and yield stress depend strongly on composition, a phenomenon the analysis does not account for. The discrepancy can be explained with matrix/filler interaction and the role of the interphase. The results indicate that although stress analysis helps to predict deformation and failure in particulate filled composites, it must be further refined to find more exact solutions and the effect of inte...

98 citations

Journal ArticleDOI
TL;DR: The study demonstrates that stiffness and strength of bone scaffold at a targeted porosity is linked to the pore shape and the associated stress concentration allowing to exploit the design freedom associated with SLM.
Abstract: Critically engineered stiffness and strength of a scaffold are crucial for managing maladapted stress concentration and reducing stress shielding. At the same time, suitable porosity and permeability are key to facilitate biological activities associated with bone growth and nutrient delivery. A systematic balance of all these parameters are required for the development of an effective bone scaffold. Traditionally, the approach has been to study each of these parameters in isolation without considering their interdependence to achieve specific properties at a certain porosity. The purpose of this study is to undertake a holistic investigation considering the stiffness, strength, permeability, and stress concentration of six scaffold architectures featuring a 68.46-90.98% porosity. With an initial target of a tibial host segment, the permeability was characterised using Computational Fluid Dynamics (CFD) in conjunction with Darcy's law. Following this, Ashby's criterion, experimental tests, and Finite Element Method (FEM) were employed to study the mechanical behaviour and their interdependencies under uniaxial compression. The FE model was validated and further extended to study the influence of stress concentration on both the stiffness and strength of the scaffolds. The results showed that the pore shape can influence permeability, stiffness, strength, and the stress concentration factor of Ti6Al4V bone scaffolds. Furthermore, the numerical results demonstrate the effect to which structural performance of highly porous scaffolds deviate, as a result of the Selective Laser Melting (SLM) process. In addition, the study demonstrates that stiffness and strength of bone scaffold at a targeted porosity is linked to the pore shape and the associated stress concentration allowing to exploit the design freedom associated with SLM.

98 citations


Network Information
Related Topics (5)
Fracture mechanics
58.3K papers, 1.3M citations
94% related
Ultimate tensile strength
129.2K papers, 2.1M citations
90% related
Finite element method
178.6K papers, 3M citations
88% related
Stress (mechanics)
69.5K papers, 1.1M citations
86% related
Alloy
171.8K papers, 1.7M citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202373
2022220
2021628
2020642
2019608
2018581