scispace - formally typeset
Search or ask a question
Topic

Stress concentration

About: Stress concentration is a research topic. Over the lifetime, 23250 publications have been published within this topic receiving 422911 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a model for brittle failure under compressive loading with an explicit accounting of micro-crack interactions is developed for the case of uniaxial compression under constant strain rate loading, and the model provides a natural prediction of a peak stress (defined as the compressive strength of the material) and also of a transition strain rate.
Abstract: A model is developed for brittle failure under compressive loading with an explicit accounting of micro-crack interactions. The model incorporates a pre-existing flaw distribution in the material. The macroscopic inelastic deformation is assumed to be due to the nucleation and growth of tensile “wing” micro-cracks associated with frictional sliding on these flaws. Interactions among the cracks are modeled by means of a crack-matrix-effective-medium approach in which each crack experiences a stress field different from that acting on isolated cracks. This yields an effective stress intensity factor at the crack tips which is utilized in the formulation of the crack growth dynamics. Load-induced damage in the material is defined in terms of a scalar crack density parameter, the evolution of which is a function of the existing flaw distribution and the crack growth dynamics. This methodology is applied for the case of uniaxial compression under constant strain rate loading. The model provides a natural prediction of a peak stress (defined as the compressive strength of the material) and also of a transition strain rate, beyond which the compressive strength increases dramatically with the imposed strain rate. The influences of the crack growth dynamics, the initial flaw distribution, and the imposed strain rate on the constitutive response and the damage evolution are studied. It is shown that different characteristics of the flaw distribution are dominant at different imposed strain rates: at low rates the spread of the distribution is critical, while at high strain rates the total flaw density is critical.

248 citations

Journal ArticleDOI
TL;DR: An implicit implementation of the non-ordinary state-based peridynamics formulation for quasi-static linearly elastic solids is presented in this paper, where emphasis is placed on assessing the accuracy of the numerical scheme in the vicinity of the crack front and other sources of stress concentration.

244 citations

Journal ArticleDOI
TL;DR: In this article, the growth of a crack is analyzed in terms of the successive blocking of the plastic zone by slip barriers and the subsequent initiation of the slip in the next grain.
Abstract: In this model the growth of a crack is analysed in terms of the successive blocking of the plastic zone by slip barriers (e.g. grain boundaries) and the subsequent initiation of the slip in the next grain. The discontinuous character of the slip process (slip jumps) plays a fundamental role in the model. The factor governing the transfer of slip across a grain boundary is considered to be the stress concentration ahead of the plastic zone which, for a constant applied stress τ, is found to be dependent only on a parameter n = a/c defining the position of the crack tip relative to the grain boundary. The discrete behaviour of the slip has a strong influence in the short-crack period and hence cannot be neglected in the analysis of the crack growth rate. This period is characterized by large variations in the parameter n. In the long-crack period the slip jumps do not influence the overall description of the growth and the parameter n is almost constant. By making the crack extension per cycle prop...

244 citations

Book
01 Jan 2003
TL;DR: In this article, the authors consider the problem of point forces in an infinite isotropic solver, and present a solution for the problem with respect to a pair of equal and opposite point forces applied at an arbitrary point of the crack.
Abstract: 1: Basic Equations of Elasticity. 1.1. Cartesian Coordinates. 1.2. Cylindrical Coordinates. 1.3. Spherical Coordinates. 1.4. Hooke's Law for Anisotropic Materials. 2: Point Forces and Systems of Point Forces in Three-Dimensional Space and Half-Space. 2.1. Point Force in an Infinite Isotropic Solid. 2.2. Systems of Forces Distributed in a Small Volume of an Infinite Isotropic Solid. 2.3. Dynamic Problems of a Suddenly Introduced Point Forces Couples and Dipoles in an Infinite Isotropic Solid. 2.4. Point Force in the Isotropic Half-Space (Mindlin's Problem). 2.5. Point Force Applied at the Boundary of the Isotropic Half-Space. 2.6. Point Force of an Infinite Transverse Isotropic Solid. 2.7. Point Force Applied at the Boundary of the Transversely Isotropic Half-Space. 2.8. Two Joined Isotropic Half-Spaces with Different Moduli: Solution for a Point Force. 3: Selected Two-Dimensional Problems. 3.1. Introductory Material. 3.2. Infinite 2-D Solid. Isotropic and Orthotropic Materials. 3.3. 2-D Isotropic Half-Plane. 3.4. Stress Concentrations near Holes and Inclusions. 3.5. Equilibrium of an Elastic Wedge. 3.6. Circular Ring Loaded by External and Internal Pressures. 4: Three-Dimensional Crack Problems for the Isotropic or Transversely Isotropic Infinite Solid. 4.1. Circular (Penny-Shaped) Crack. 4.2. Half-Plane Crack. 4.3. External Circular Crack. 4.4. Elliptical Crack. 5: A Crack in an Infinite Isotropic Two-Dimensional Solid. 5.1. A Pair of Equal and Opposite Point Forces Applied at an Arbitrary Pointof the Crack. 5.2. Uniform Loading at Crack Faces. 5.3. Crack Tip Fields. 5.4. Far Field Asymptotics. 6: A Crack in an Infinite Anisotropic Two-Dimensional Solid. 6.1. Notations and General Representations for a 2-D Anisotropic Elastic Solid. 6.2. A Pair of Equal and Opposite Point Forces Applied at an Arbitrary Point of the Crack. 6.3. Uniform Loading at Crack Faces. 6.4. Crack Tip Fields. 6.5. Far Field Asymptotics. 6.6. Crack Compliance Tensor. 6.7. Appendix. 7: Thermoelasticity. 7.1. Basic Equations. 7.2. Stationary 3-D Problems. 7.3. Non-Stationary 3-D Problems. 7.4. Stationary 2-D Problems. 7.5. Non-Stationary 2-D Problems. 7.6. Thermal Stresses in Heated Infinite Solid Containing an Inhomogeneity or a Cavity. 8: Contact Problems. 8.1. 2-D Problems for a Rigid Punch on the Isotropic and Anisotropic Elastic Half-Plane. 8.2. 3-D Problems for a Rigid Punch on the Isotropic and Transversely Isotropic Elastic Half-Space. 8.3. Contact of Two Elastic Bodies (Hertz' Problem). 9: Eshelby's Problem and Related Results. 9.1. Inclusion Problem. 9.2. Ellipsoidal Inhomogeneity. 9.3. Eshelby's Tensor for Various Ellipsoidal Shapes. 9.4. Alternative Form of Solution for Ellipsoidal Inhomogeneity. 9.5. Expressions for Tensors P, Q, A and GBPIiGBP. 9.6. Quantities Relevant for Calculation of the Effective Elastic Properties. 10: Elastic Space Containing a Rigid Ellipsoidal Inclusion Subjected to Translation and Rotation. 10.1.

243 citations


Network Information
Related Topics (5)
Fracture mechanics
58.3K papers, 1.3M citations
94% related
Ultimate tensile strength
129.2K papers, 2.1M citations
90% related
Finite element method
178.6K papers, 3M citations
88% related
Stress (mechanics)
69.5K papers, 1.1M citations
86% related
Alloy
171.8K papers, 1.7M citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202373
2022220
2021628
2020642
2019608
2018581