scispace - formally typeset
Search or ask a question
Topic

Stress corrosion cracking

About: Stress corrosion cracking is a research topic. Over the lifetime, 11340 publications have been published within this topic receiving 138157 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the effects of interfacial and matrix microstructure on microdeformation and primary side stress corrosion cracking (SCC) of alloy 600 tubing were examined after various tensile deformations.
Abstract: Microdeformation characteristics in alloy 600 tubing have been examined after various tensile deformations. Microstructure developed during processing was found to control subsequent microdeformation behavior. Grain boundary carbides were the most effective source of dislocations, activating at lower macrostrains and continuing to operate at higher macrostrains than other sources. Ledges within grain boundaries, twin boundaries, and matrix carbides also acted as dislocation sources. Most dislocation activity at low strains was confined to planar arrays. A conceptual model is presented to explain the effects of interfacial and matrix microstructure on microdeformation and primary side stress corrosion cracking (SCC) of alloy 600 tubing. Microstructure is linked to intergranular stress corrosion cracking (IGSCC) resistance through its influence on microdeformation behavior and the resultant crack tip stress state. Dislocation source activity at grain interfaces is proposed to be critical in control...

79 citations

Journal ArticleDOI
TL;DR: In this article, various alloys were exposed in a supercritical water oxidation (SCWO) system at 600 °C for 66.2 h. The inner oxide layer revealed the presence of numerous defects and a thickness that was proportional to the corrosion rate determined by mass loss, suggesting the oxide layer is nonprotective.
Abstract: There is a need to destroy both military and civilian hazardous waste and an urgency, mandated by public concern over traditional waste handling methodologies, to identify safe and efficient alternative technologies. One very effective process for the destruction of such waste is supercritical water oxidation (SCWO). By capitalizing on the properties of water above its critical point (374 °C and 22.4 MPa for pure water), this technology provides rapid and complete oxidation with high destruction efficiencies at typical operating temperatures. Nevertheless, corrosion of the materials of fabrication is a serious concern. While Ni and Ni-based alloys are generally considered important for severe service applications, results from laboratory and pilot-scale SCWO systems presently in operation indicate that they will not withstand some aggressive feeds. Significant weight loss and localized effects, including stress corrosion cracking and dealloying, are seen in some environments. Although exotic liners such as platinum are currently promoted as a solution to aggressive conditions, some evidence suggests the potential for corrosion control by judicious feed modification. Various alloys were exposed in a SCWO system at 600 °C for 66.2 h. After exposure, samples were coated with a thick outer salt layer and an inner oxide layer. It is considered likely that, at the high supercritical temperature employed during this test, the salt was molten and contained a substantial quantity of gas. The inner oxide layer revealed the presence of numerous defects and a thickness that is proportional to the corrosion rate determined by mass loss, suggesting the oxide layer is nonprotective. Of the alloys tested, G-30 exhibited the highest corrosion resistance. Experiments in which a C-276 tube was instrumented with thermocouples and exposed to a HCl feed indicate for this simple non-saltforming influent that there is a strong correlation between temperature and the extent and form of corrosion, with the most pronounced degradation being at high subcritical temperatures. These experiments corroborate previous results from a failure analysis for C-276, suggesting a corrosion maximum in the subcritical region. Background

79 citations

Journal ArticleDOI
TL;DR: In this article, the irradiation-induced microstructure and IASCC behavior of additively manufactured (AM) 316L stainless steels produced by laser powder bed fusion were evaluated for the first time.

79 citations

Journal ArticleDOI
TL;DR: In this article, the susceptibility of welded and unwelded samples of Al 5454 (UNS A95454) in the -O and -H34 tempers to pitting corrosion and stress corrosion cracking (SCC) in chloride solutions was studied.
Abstract: The susceptibility of welded and unwelded samples of Al 5454 (UNS A95454) in the -O and -H34 tempers to pitting corrosion and stress corrosion cracking (SCC) in chloride solutions was studied. Welded samples were fabricated using the relatively new friction stir welding (FSW) process as well as a standard gas-tungsten arc welding process for comparison. Pitting corrosion was assessed through potentiodynamic polarization experiments. U-bend and slow strain rate tests were used to determine SCC resistance. The FSW samples exhibited superior resistance to pitting corrosion compared to the base metal and arc-welded samples. U-bend tests indicated adequate SCC resistance for the FSW samples. However, the FSW samples exhibited discontinuities that probably were associated with remnant boundaries of the original plates. These defects resulted in intermittent increased susceptibility to pitting and, particularly for Al 5454-H34 samples, poor mechanical properties in general.

79 citations

Journal ArticleDOI
TL;DR: In this paper, the potential of using a cavitating jet to form compressive residual stress has been investigated, and the in-plane normal stresses were measured in three different directions on the surface plane using the X-ray diffraction method, allowing for the principal stresses to be calculated.
Abstract: In an attempt to strengthen the surface of materials, the potential of using a cavitating jet to form compressive residual stress has been investigated. Introducing compressive residual stress to a material surface provides improvement of the fatigue strength and resistance to stress corrosion cracking. In general, cavitation causes damage to hydraulic machinery. However, cavitation impact can be used to form compressive residual stress in the same way as shot peening. In the initial stage, when cavitation erosion progresses, only plastic deformation, without mass loss, takes place on the material surface. Thus, it is possible to form compressive residual stress without any damage by considering the intensity and exposure time of the cavitation attack. Cavitation is also induced by ultrasonic, high-speed water tunnel and high-speed submerged water jet, i.e., a cavitating jet. The great advantage of a cavitating jet is that the jet causes the cavitation wherever the cavitation impact is required. To obtain the optimum condition for the formation of compressive residual stress by using a cavitating jet, the residual stresses on stainless steel (JIS SUS304 and SUS316) and also copper (JIS C1100) have been examined by changing the exposure time of the cavitating jet. The in-plane normal stresses were measured in three different directions on the surface plane using the X-ray diffraction method, allowing for the principal stresses to be calculated. Both of the principal stresses are found changing from tension to compression within a 10 s exposure to the cavitating jet. The compressive residual stress as a result of the cavitating jet was found to be saturated after a certain time, but it starts decreasing, and finally, it approaches zero asymptotically. It could be verified in the present study that it was possible to form compressive residual stress by using a cavitating jet, and the optimum processing time could also he realized. The great difference between the water jet in water and air has also been shown in this regard.

79 citations


Network Information
Related Topics (5)
Corrosion
152.8K papers, 1.9M citations
92% related
Alloy
171.8K papers, 1.7M citations
86% related
Fracture mechanics
58.3K papers, 1.3M citations
82% related
Microstructure
148.6K papers, 2.2M citations
81% related
Grain boundary
70.1K papers, 1.5M citations
80% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023181
2022356
2021275
2020272
2019338
2018275