scispace - formally typeset
Search or ask a question
Topic

Stress field

About: Stress field is a research topic. Over the lifetime, 11926 publications have been published within this topic receiving 226417 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the role of stress wave and gas pressure in the fragmentation of an underground blast was clarified by separating the two principal blast forces analytically and experimentally in the zone immediately around the borehole.

294 citations

Journal ArticleDOI
Allan M. Rubin1
TL;DR: In this paper, a Barenblatt model that treats fracture resistance as an internal cohesive stress acting at the crack tip is used to investigate the effect of confining pressure on rock tensile failure.
Abstract: Field observations indicate that zones of inelastic deformation produced at the tips of propagating dikes can be much larger than those produced at the tips of tensile cracks in laboratory experiments. This is in direct conflict with the concept that fracture toughness and fracture energy are rock properties, independent of crack size and loading configuration. A Barenblatt model that treats fracture resistance as an internal cohesive stress acting at the crack tip is used to investigate the effect of confining pressure on rock tensile failure. When the confining pressure exceeds the cohesive strength of the rock, as it does at depths greater than several hundred meters, Linear Elastic Fracture Mechanics is inapplicable and the near-tip stress field of a propagating crack is determined by the crack size and loading configuration as well as by rock properties. As inelastic deformation depends upon the near-tip stress field, it follows that fracture energy may also depend upon crack size and loading configuration. For a propagating dike, the near-tip stress field is dominated by the large suction acting within a small (∼several meter) cavity at the tip generated by viscous flow of magma within the dike. Perturbations to the ambient stress are on the order of the cavity suction and act over regions on the order of the cavity length. The tip cavity pressure may be maintained by exsolution of magmatic volatiles or by influx of host rock pore fluids; inelastic deformation is enhanced by the latter. For a tip cavity pressure maintained by influx of pore fluids, the pore pressure exceeds the least compressive stress off the dike plane, even while it equals the least compressive stress at the dike tip. This can lead to tensile failure off the dike plane and the formation of observed dike-parallel joints. Shear stresses scale with the cavity suction and may produce shear failure off the dike plane; such deformation is generally enhanced if the dike is intruded perpendicular to the least compressive stress. For sills intruded parallel to bedding, shear failure in the form of bedding plane slip can lead to the observed blunting and fingering of the intrusion front. Because the tip cavity grows with dike size, the energy consumed by rock fracture also increases with dike size and is potentially as significant for large dikes as for small dikes, a view not adopted by existing fluid mechanical models of dike propagation.

292 citations

Journal ArticleDOI
TL;DR: Fault slip distributions are commonly assumed to be symmetric about a central slip maximum, however, slip distributions in nature are often asymmetric as mentioned in this paper, and the slip distribution may be modified if the fault propagates or if additional slip events occur.

290 citations

Journal ArticleDOI
TL;DR: In this article, the authors used in situ stress orientations from well bore breakout and hydraulic fracturing data to determine if slip is compatible with a broad-scale regional stress field derived from plate-driving forces and, if so, under what conditions (stress regime, pore pressure, and frictional coefficient).
Abstract: Focal mechanisms of 32 North American midplate earthquakes (mo = 3.8-6.5) were evaluated to determine if slip is compatible with a broad-scale regional stress field derived from plate-driving forces and, if so, under what conditions (stress regime, pore pressure, and frictional coefficient). Using independent information on in situ stress orientations from well bore breakout and hydraulic fracturing data and assuming that the regional principal stresses are in approximately horizontal and vertical planes (_ 10o), the constraint that the slip vector represents the direction of maximum resolved shear stress on the fault plane was used to calculate relative stress magnitudes defined by the parameterb = (S2 - S3)/(S - S3) from the fault/stress geometry. As long as the focal mechanism has a component of oblique slip (i.e., the B axis does not coincide with the intermediate principal stress direction), this calculation identifies which of the two nodal planes is a geometrically possible slip plane (Gephart, 1985). Slip in a majority of the earthquakes (25 of 32) was found to be geometrically compatible with reactivation of favorably oriented preexisting fault planes in response to the broad-scale uniform regional stress field. Slip in five events was clearly inconsistent with the regional stress field and appears to require a localized stress anomaly to explain the seismicity. Significantly, all five of these events occurred prior to 1970 (when many regional networks were installed), and their focal mechanisms are inconsistent with more recent solutions of nearby smaller events. The frictional likelihood of the geometrically possible slip on the selected fault planes was evaluated in the context of conventional frictional faulting theory. The ratio of shear to normal stress on the fault planes at hypocentral depth was calculated relative to an assumed regional stress field. Regional stress magnitudes were determined from (1) S/S3 ratios based on the frictional strength of optimally oriented faults (the basis for the linear brittle portion of lithospheric strength profiles), (2) the computed relative stress magnitude (b) values, and (3) a vertical principal stress assumed equal to the lithostat. Two end-member possibilities were examined to explain the observed slip in these less than optimally oriented fault planes. First, the frictional coefficient was held constant on all faults, hydrostatic pore pressure was assumed regionally, and the fault zone pore pressure was determined. Since pore pressure is a measurable quantity with real limits in the crust (P0 < S3), this end-member case was used to determine which of the geometrically possible slip planes were frictionally likely slip planes. Alternately, pore pressure was fixed at hydrostatic everywhere, and the required relative lowered frictional coefficient of the fault zone was computed. Slip in 23 of the 25 geometrically compatible earthquakes was determined to also be frictionally likely in response to an approximately horizontal and vertical regional stress field derived from plate-driving forces whose magnitudes are constrained by the frictional strength of optimally oriented faults (assuming hydrostatic pore pressure regionally). The conditions for slip on these 23 relatively "well-oriented" earthquake faults were determined relative to this regional crustal strength model and require only moderate increases in pore pressure (between about 0.4-0.8 of lithostatic, hydrostatic is about 0.37 of lithostatic) or, alternately, moderate lowering (<50%) of the frictional coefficient on the faults which slipped. Superlithostatic pore pressures are not required. Focal mechanisms for the two other earthquakes with slip vectors geometrically consistent with the regional stress field, however, did require pore pressures far exceeding the least principal stress (or extremely low coefficients of friction). These events may reflect either local stress rotations undetected with current sampling or poorly constrained focal mechanisms. The analysis also confirmed a roughly north to south contrast in stress regime between the central eastern United States and southeastern Canada previously inferred from a contrast in focal mecha- nisms between the two areas: most central eastern United States earthquakes occur in response to a strike-slip stress regime, whereas the southeastern Canadian events require a thrust faulting stress regime. This contrast in stress regime, with a constant maximum horizontal stress orientation determined by far-field plate-driving forces, requires a systematic lateral variation in relative stress magnitudes. Superposition of stresses due to simple flexural models of glacial rebound stresses are of the correct sense to explain the observed lateral variation, but maximum computed rebound-related stress magnitude changes are quite small (about 10 MPa) and do not appear large enough to account for the stress regime change if commonly assumed stress magnitudes determined from frictional strength apply to the crust at seismogenic depths.

286 citations

Journal ArticleDOI
TL;DR: In this article, the critical resolved shear stress for basal slip was found to increase with the square root of the solute concentration in two linear stages having a transition at 0.025 at. % Zn.

286 citations


Network Information
Related Topics (5)
Fracture mechanics
58.3K papers, 1.3M citations
86% related
Finite element method
178.6K papers, 3M citations
83% related
Numerical analysis
52.2K papers, 1.2M citations
79% related
Ultimate tensile strength
129.2K papers, 2.1M citations
79% related
Thermal conductivity
72.4K papers, 1.4M citations
78% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023245
2022517
2021392
2020416
2019410
2018388