scispace - formally typeset
Search or ask a question
Topic

Stress field

About: Stress field is a research topic. Over the lifetime, 11926 publications have been published within this topic receiving 226417 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, discrete dislocation dynamics (DDDDDD) has been used to model the deformation of nickel-based single crystal superalloys with a high volume fraction of precipitates at high temperature.

116 citations

Journal ArticleDOI
TL;DR: In this article, the Coulomb criterion for frictional sliding was used to evaluate the possibility of slip on preexisting faults at the Yucca mountain tuffs. But, the results showed that for coefficients of friction close to 0.6, movement on favorably oriented faults of all orientations should be stable.
Abstract: Hydraulic fracturing stress measurements and acoustic borehole televiewer logs were run in holes USW G-1 and USW G-2 at Yucca Mountain as part of the Nevada Nuclear Waste Storage Investigations for the U.S. Department of Energy. Eight tests in the saturated zone, at depths from 646 to 1288 m, yielded values of the least horizontal stress S_h that are considerably lower than the vertical principal stress S_v. In tests for which the greatest horizontal principal stress S_H could be determined, it was found to be less than S_v, indicating a normal faulting stress regime. The borehole televiewer logs showed the presence of long (in excess of 10 m), vertical, drilling-induced fractures in the first 300 m below the water table. These are believed to form by the propagation of small preexisting cracks under the excess downhole fluid pressures (up to 5.2 MPa) applied during drilling. The presence of these drilling-induced hydrofractures provides further confirmation of the low value of the least horizontal stresses. A least horizontal principal stress direction of N60°W–N65°W is indicated by the orientation of the drilling-induced hydrofractures (N25°E–N30°E), and the orientation of stress-induced well bore breakouts in the lower part of USW G-2 (N65°W). This direction is in good agreement with indicators of stress direction from elsewhere at the Nevada Test Site. The observed stress magnitudes and directions were examined for the possibility of slip on preexisting faults. Using these data, the Coulomb criterion for frictional sliding suggests that for coefficients of friction close to 0.6, movement on favorably oriented faults could be expected. For coefficients of friction of 1.0, preexisting faults of all orientations should be stable. Laboratory studies on the Yucca Mountain tuffs, reported elsewhere, yield coefficients of friction ranging from 0.6 to 0.9.

116 citations

Journal ArticleDOI
TL;DR: In this article, the linear elasticity theory is used to calculate local stress increments produced by slip on the fault network, and brittle failure of rock within this stress field is determined according to a combined Griffith-Coulomb criterion.

116 citations

Journal ArticleDOI
TL;DR: In this paper, it is shown that the stress field in granular fluids may be strongly scale, or resolution, dependent, and the correlation (or decay) time of the stress fluctuations is of the order of the mean free time, which is also a macroscopic time.
Abstract: It is shown that, unlike in simple molecular fluids, the stress field in granular fluids may be strongly scale, or resolution, dependent. This is a result of the intrinsic lack of scale separation in these fluids. Another consequence of the lack of scale separation in granular fluids is that microscopic stress fluctuations, whose origin (like in molecular fluids) is the underlying discreteness of the system, may appear as observables in macroscopic measurements; the correlation (or decay) time of the stress fluctuations is of the order of the mean-free time, which is also a macroscopic time. All of these properties are intrinsic to granular fluids and not (for example) results of the practical lack of scale separation that is dictated by the fact that grains are of macroscopic dimensions or the limited statistics in simulations. Numerical evidence, based on molecular-dynamic simulations of shear flows of smooth disks in a two-dimensional enclosure, serves to demonstrate the above phenomena.

115 citations


Network Information
Related Topics (5)
Fracture mechanics
58.3K papers, 1.3M citations
86% related
Finite element method
178.6K papers, 3M citations
83% related
Numerical analysis
52.2K papers, 1.2M citations
79% related
Ultimate tensile strength
129.2K papers, 2.1M citations
79% related
Thermal conductivity
72.4K papers, 1.4M citations
78% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023245
2022517
2021392
2020416
2019410
2018388