Topic

# Stress (mechanics)

About: Stress (mechanics) is a research topic. Over the lifetime, 69530 publications have been published within this topic receiving 1142061 citations. The topic is also known as: mechanical stress & stress, mechanical.

##### Papers published on a yearly basis

##### Papers

More filters

••

TL;DR: In this paper, a method of calculating the average internal stress in the matrix of a material containing inclusions with transformation strain is presented. But the authors do not consider the effects of the interaction among the inclusions and of the presence of the free boundary.

Abstract: Having noted an important role of image stress in work hardening of dispersion hardened materials, (1,3) the present paper discusses a method of calculating the average internal stress in the matrix of a material containing inclusions with transformation strain. It is shown that the average stress in the matrix is uniform throughout the material and independent of the position of the domain where the average treatment is carried out. It is also shown that the actual stress in the matrix is the average stress plus the locally fluctuating stress, the average of which vanishes in the matrix. Average elastic energy is also considered by taking into account the effects of the interaction among the inclusions and of the presence of the free boundary.

7,000 citations

••

TL;DR: In this paper, a stress-strain model for concrete subjected to uniaxial compressive loading and confined by transverse reinforcement is developed for concrete sections with either spiral or circular hoops, or rectangular hoops with or without supplementary cross ties.

Abstract: A stress‐strain model is developed for concrete subjected to uniaxial compressive loading and confined by transverse reinforcement. The concrete section may contain any general type of confining steel: either spiral or circular hoops; or rectangular hoops with or without supplementary cross ties. These cross ties can have either equal or unequal confining stresses along each of the transverse axes. A single equation is used for the stress‐strain equation. The model allows for cyclic loading and includes the effect of strain rate. The influence of various types of confinement is taken into account by defining an effective lateral confining stress, which is dependent on the configuration of the transverse and longitudinal reinforcement. An energy balance approach is used to predict the longitudinal compressive strain in the concrete corresponding to first fracture of the transverse reinforcement by equating the strain energy capacity of the transverse reinforcement to the strain energy stored in the concret...

6,261 citations

•

01 Jan 2000

TL;DR: The Stress Analysis of Cracks Handbook as mentioned in this paper provides a comprehensive, easy-to-access collection of elastic stress solutions for crack configurations, along with other relevant information, such as displacements, crack opening areas, basic stress functions source references, accuracy of solutions, and more.

Abstract: Nearly double the size of the previous edition, the third edition of this classic reference provides a comprehensive, easy-to-access collection of elastic stress solutions for crack configurations. For each configuration, The Stress Analysis of Cracks Handbook present crack tip stress intensity formulas along with other relevant information, such as displacements, crack opening areas, basic stress functions source references, accuracy of solutions, and more. Throughout, it stresses formulas for application to test configurations. The introductory section details the methods of developing the informatio A series of appendices represents special methods and special applications. Now in a hardbound format, the current Handbook offers a number of new features including: * Ne Stress Solutions * Cracked Configurations * Plates with Pinching Loads * Dislocations and Cracks Solutions * Plastic Zone Instability (Expanding a Potentially Interceding "Elastic" Failure Mechanism) * Estimation Methods for Stress Intensity Formulas * J-Integral Methods * Pure Shear Plasticity Solutions. The authors provide 30 new solution pages, plus modifications of older solutions. Contents Include: * Introductory Information Stress Analysis Results for Common Test Specimen Configurations with Cracks * Cracks Along a Single Line * Parallel Cracks * Cracks and Holes or Notches * Curved, Angled, Branched, or Radiating Cracks * Cracks in Reinforced Plates * Three-Dimensional Cracked Configurations * Crack(s) in a Rod or a Plate by Energy Rate Analysis * Strip Yield Model Solutions * Cracks(s) in a Shell * Appendices.

5,374 citations

••

TL;DR: In this article, a variational principle is established to characterize the flow field in an elastically rigid and incompressible plastic material containing an internal void or voids, and an approximate Rayleigh-Ritz procedure is developed and applied to the enlargement of an isolated spherical void in a nonhardening material.

Abstract: The fracture of ductile solids has frequently been observed to result from the large growth and coalescence of microscopic voids, a process enhanced by the superposition of hydrostatic tensile stresses on a plastic deformation field. The ductile growth of voids is treated here as a problem in continuum plasticity. First, a variational principle is established to characterize the flow field in an elastically rigid and incompressible plastic material containing an internal void or voids, and subjected to a remotely uniform stress and strain rate field. Then an approximate Rayleigh-Ritz procedure is developed and applied to the enlargement of an isolated spherical void in a nonhardening material. Growth is studied in some detail for the case of a remote tensile extension field with superposed hydrostatic stresses. The volume changing contribution to void growth is found to overwhelm the shape changing part when the mean remote normal stress is large, so that growth is essentially spherical. Further, it is found that for any remote strain rate field, the void enlargement rate is amplified over the remote strain rate by a factor rising exponentially with the ratio of mean normal stress to yield stress. Some related results are discussed, including the long cylindrical void considered by F.A. McClintock (1968, J. appl. Mech . 35 , 363), and an approximate relation is given to describe growth of a spherical void in a general remote field. The results suggest a rapidly decreasing fracture ductility with increasing hydrostatic tension.

4,156 citations