scispace - formally typeset
Topic

Stress relaxation

About: Stress relaxation is a(n) research topic. Over the lifetime, 12959 publication(s) have been published within this topic receiving 270815 citation(s).


Papers
More filters
Book
14 Dec 1993
TL;DR: In this article, the authors discuss various mechanical properties of fiber-filled composites, such as elastic moduli, creep and stress relaxation, and other mechanical properties such as stress-strain behavior and strength.
Abstract: Mechanical Tests and Polymer Transitions * Elastic Moduli * Creep and Stress Relaxation * Dynamical Mechanical Properties * Stress-Strain Behaviour and Strength * Other mechanical Properties * Particulate-Filled Polymers * Fiber- Filled Composites and Other Composites.

3,083 citations

Journal ArticleDOI
TL;DR: In this paper, conditions for instability of plastic strain under plane stress for a material conforming to the Mises-Hencky yield condition and strain-hardening according to a unique relationship between root-mean-square values of shear stress (q) and incremental strain (δψ).
Abstract: This paper examines the conditions for instability of plastic strain under plane stress for a material conforming to the Mises-Hencky yield condition and strain-hardening according to a unique relationship between root-mean-square values of shear stress (q) and incremental strain (δψ). If, under fixed loading conditions, the material undergoes a strain increment which is consistent with the applied stress system, the conditions are stable or unstable according as the increment in representative yield stress is greater or less than the increment in representative induced stress. The strain at which instability arises is found in terms of the biaxial stress ratio p2/p1 under different conditions of applied loading, and the effect is demonstrated of strain-hardening according to an empirical relation of the type q = c (a + ψ)n. The analysis is also applied to certain cases of non-uniform stress distribution. In the case of the hydrostatic bulge results are obtained showing a critical thinning ranging from 26 per cent for a non-hardening material to about 45 per cent for typical strain-hardening materials, values in general agreement with experimental data. Conditions over the punch head in the pressing of a cylindrical shell are discussed but computations are not attempted.

1,400 citations

Book
14 Dec 1997
TL;DR: An Introduction to Dynamic Mechanical Analysis as discussed by the authors is a good starting point for a discussion of the application of dynamic testing in real world problems, as well as guidelines for DMA applications to real problems.
Abstract: An Introduction to Dynamic Mechanical Analysis. Basic Rheological Concepts: Stress, Strain, and Flow. Rheology Basic: Creep-Recovery and Stress Relaxation. Thermomechanical Analysis. Dynamic Testing. Time-Temperature Scans Part I: Transitions in Polymers. Time and Temperature Studies: Part II Thermosets. Frequency Scans. DMA Applications to Real Problems: Guidelines.

1,389 citations

Journal ArticleDOI
TL;DR: In this article, the true stress-strain curves of polycrystalline aluminum, copper, and stainless steel are shown to be adequately represented by an exponential approach to a saturation stress over a significant range.
Abstract: The true stress-strain curves of polycrystalline aluminum, copper, and stainless steel are shown to be adequately represented by an exponential approach to a saturation stress over a significant range. This empirical law, which was first proposed by Voce, is expanded to describe the temperature and strain-rate dependence, and is put on a physical foundation in the framework of dislocation storage and dynamic recovery rates. The formalism can be applied to the steady-state limit of creep in the same range of temperatures and strain rates; the stress exponent of the creep rate must, as a consequence, be strongly temperature dependent, the activation energy weakly stress dependent. Near half the melting temperature, where available work-hardening data and available creep data overlap, they match. Extrapolation of the proposed law to higher temperatures suggests that no new mechanisms may be necessary to describe high-temperature creep. A new differential equation for transient creep also follows from the empirical work-hardening law.

1,250 citations

Network Information
Related Topics (5)
Polymer
131.4K papers, 2.6M citations
86% related
Oxide
213.4K papers, 3.6M citations
82% related
Coating
379.8K papers, 3.1M citations
82% related
Thin film
275.5K papers, 4.5M citations
82% related
Carbon nanotube
109K papers, 3.6M citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202216
2021265
2020276
2019270
2018281
2017332