scispace - formally typeset
Search or ask a question
Topic

Stress relaxation

About: Stress relaxation is a research topic. Over the lifetime, 12959 publications have been published within this topic receiving 270815 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the compressive resistance relaxation of carbon black filled silicone rubber composite with different instantaneous compression pressure was studied and the experimental results showed that the sudden increment of composite resistance increases with the increase of the instantaneous compressive pressure.

70 citations

Journal ArticleDOI
TL;DR: In this article, the authors studied the nonlinear viscoelastic behavior of glassy polymers and its relationship to ductile yielding by single and double-step stress relaxation experiments.
Abstract: The nonlinear viscoelastic behavior of glassy polymers and its relationship to ductile yielding is studied by single- and double-step stress relaxation experiments. In the latter case a small stress relaxation step is superimposed on a specimen at an elevated state of temperature or strain. The results show that the changes in the relaxation behaviors in the two cases closely parallel each other. The relaxation behavior at strains near yield closely approximates that at low strain but near Tg. The small strain relaxation response can be described well by a Kohlrausch-Williams-Watts (KWW) type function. The interpretation of these data in terms of a coupling model which includes the KWW form is discussed.

70 citations

Journal ArticleDOI
TL;DR: In this paper, a visco-elastic model is described in which these phenomena are attributed to local shear stress relaxation in thermal spikes induced by the energy transfer from the projectile particle to the target, followed by freezing in of the associated strain increments during cooling down.

70 citations

Journal ArticleDOI
TL;DR: The shape of the relaxation function as characterized by the stretching exponent beta is discussed considering that a time-temperature master curve can be constructed even though the beta's for the individual response curves at each temperature vary systematically.
Abstract: Relaxation and aging behaviors in three supercooled liquids: m-toluidine, glycerol, and sucrose benzoate have been studied by shear stress relaxation experiments in the time domain above and below their nominal glass transition temperatures. For the equilibrium state, the current study provides new data on the behavior of organic complex fluids. The shape of the relaxation function as characterized by the stretching exponent β is discussed considering that a time-temperature master curve can be constructed even though the β’s for the individual response curves at each temperature vary systematically. In the nonequilibrium state, isothermal physical aging experiments at different glassy structures reveal that the effect of the aging process on the mechanical shear relaxation in these simple glass formers is similar to that observed in polymeric and other systems. Departure from the Vogel-Fulcher-Tamman behavior after the samples have aged back to equilibrium in the glassy state is observed for m-toluidine ...

70 citations

Journal ArticleDOI
TL;DR: In this article, a non-linear viscoelastic creep equation for polycrystalline material is presented, which incorporates the effect of cracking and is capable of describing primary, secondary and tertiary behaviour.
Abstract: A non-linear viscoelastic creep equation for polycrystalline material is presented. It incorporates the effect of cracking and is capable of describing primary, secondary and tertiary behaviour. The model predicts the formation of microcracks and thus the damage state due to the high-temperature grain-boundary embrittlement process. This paper describes its application in formulating crack-enhanced creep and material response under constant strain-rate loading conditions (theoretically the simplest case but actually the most difficult to maintain). The formulation makes it possible to define the rate effect on stress-strain response and the rate sensitivity of strength, failure time, failure strain, damage and damage rate, strain recovery, etc. Numerical correspondence between theory and experiment was observed when predictions were compared with available closed-loop, controlled, constant strain-rate strength and deformation data on pure ice. Calculations made use of material constants determined from independent constant-load creep tests.

70 citations


Network Information
Related Topics (5)
Polymer
131.4K papers, 2.6M citations
86% related
Oxide
213.4K papers, 3.6M citations
82% related
Coating
379.8K papers, 3.1M citations
82% related
Thin film
275.5K papers, 4.5M citations
82% related
Carbon nanotube
109K papers, 3.6M citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023145
2022390
2021266
2020276
2019270
2018281