scispace - formally typeset

Topic

Stress–strain curve

About: Stress–strain curve is a(n) research topic. Over the lifetime, 11351 publication(s) have been published within this topic receiving 251437 citation(s). The topic is also known as: Stress-strain curve & Stress-strain diagram.


Papers
More filters
Journal ArticleDOI
Abstract: In the course of an investigation of the effect of surface scratches on the mechanical strength of solids, some general conclusions were reached which appear to have a direct bearing on the problem of rupture, from an engineering standpoint, and also on the larger question of the nature of intermolecular cohesion. The original object of the work, which was carried out at the Royal Aircraft Estab­lishment, was the discovery of the effect of surface treatment—such as, for instance, filing, grinding or polishing—on the strength of metallic machine parts subjected to alternating or repeated loads. In the case of steel, and some other metals in common use, the results of fatigue tests indicated that the range of alternating stress which could be permanently sustained by the material was smaller than the range within which it was sensibly elastic, after being subjected to a great number of reversals. Hence it was inferred that the safe range of loading of a part, having a scratched or grooved surface of a given type, should be capable of estimation with the help of one of the two hypotheses of rupture commonly used for solids which are elastic to fracture. According to these hypotheses rupture may be expected if (a) the maximum tensile stress, ( b ) the maximum extension, exceeds a certain critical value. Moreover, as the behaviour of the materials under consideration, within the safe range of alternating stress, shows very little departure from Hooke’s law, it was thought that the necessary stress and strain calculations could be performed by means of the mathematical theory of elasticity.

9,348 citations

Journal ArticleDOI
Abstract: A stress‐strain model is developed for concrete subjected to uniaxial compressive loading and confined by transverse reinforcement. The concrete section may contain any general type of confining steel: either spiral or circular hoops; or rectangular hoops with or without supplementary cross ties. These cross ties can have either equal or unequal confining stresses along each of the transverse axes. A single equation is used for the stress‐strain equation. The model allows for cyclic loading and includes the effect of strain rate. The influence of various types of confinement is taken into account by defining an effective lateral confining stress, which is dependent on the configuration of the transverse and longitudinal reinforcement. An energy balance approach is used to predict the longitudinal compressive strain in the concrete corresponding to first fracture of the transverse reinforcement by equating the strain energy capacity of the transverse reinforcement to the strain energy stored in the concret...

5,200 citations

Journal ArticleDOI
Abstract: The fracture of ductile solids has frequently been observed to result from the large growth and coalescence of microscopic voids, a process enhanced by the superposition of hydrostatic tensile stresses on a plastic deformation field. The ductile growth of voids is treated here as a problem in continuum plasticity. First, a variational principle is established to characterize the flow field in an elastically rigid and incompressible plastic material containing an internal void or voids, and subjected to a remotely uniform stress and strain rate field. Then an approximate Rayleigh-Ritz procedure is developed and applied to the enlargement of an isolated spherical void in a nonhardening material. Growth is studied in some detail for the case of a remote tensile extension field with superposed hydrostatic stresses. The volume changing contribution to void growth is found to overwhelm the shape changing part when the mean remote normal stress is large, so that growth is essentially spherical. Further, it is found that for any remote strain rate field, the void enlargement rate is amplified over the remote strain rate by a factor rising exponentially with the ratio of mean normal stress to yield stress. Some related results are discussed, including the long cylindrical void considered by F.A. McClintock (1968, J. appl. Mech . 35 , 363), and an approximate relation is given to describe growth of a spherical void in a general remote field. The results suggest a rapidly decreasing fracture ductility with increasing hydrostatic tension.

3,769 citations

Journal ArticleDOI
Abstract: D istributions of stress occurring at the tip of a crack in a tension field are presented for both plane stress and plane strain. A total deformation theory of plasticity, in conjunction with two hardening stress-strain relations, is used. For applied stress sufficiently low such that the plastic zone is very small relative to the crack length, the dominant singularity can be completely determined with the aid of a path-independent line integral recently given by rice (1967). The amplitude of the tensile stress singularity ahead of the crack is found to be larger in plane strain than in plane stress.

2,580 citations

01 Jul 1943
Abstract: A simple formula is suggested for describing the stress-strain curve in terms of three parameters; namely, Young's modulus and two secant yield strengths. Dimensionless charts are derived from this formula for determining the stress-strain curve, the tangent modulus, and the reduced modulus of a material for which these three parameters are given. Comparison with the tensile and compressive data on aluminum-alloy, stainless-steel, and carbon-steel sheet in NACA Technical Note No. 840 indicates that the formula is adequate for most of these materials. The formula does not describe the behavior of alclad sheet, which shows a marked change in slope at low stress. It seems probable that more than three parameters will be necessary to represent such stress-strain curves adequately.

2,344 citations

Network Information
Related Topics (5)
Ultimate tensile strength

129.2K papers, 2.1M citations

90% related
Fracture mechanics

58.3K papers, 1.3M citations

90% related
Finite element method

178.6K papers, 3M citations

88% related
Composite number

103.4K papers, 1.2M citations

83% related
Microstructure

148.6K papers, 2.2M citations

82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202216
2021445
2020447
2019442
2018440
2017407