scispace - formally typeset
Search or ask a question
Topic

Strouhal number

About: Strouhal number is a research topic. Over the lifetime, 5203 publications have been published within this topic receiving 139840 citations. The topic is also known as: Thomson number.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors reviewed the occurrence of the precessing vortex core (PVC) and other instabilities, which occur in, swirl combustion systems whilst identifying mechanisms, which allow coupling between the acoustics, combustion and swirling flow dynamics to occur.

894 citations

Journal ArticleDOI
TL;DR: In this article, experiments on the vortex shedding frequencies of various rectangular cylinders were conducted in a wind tunnel and in a water tank and the results show how Strouhal number varies with a width-to-height ratio of the cylinders in the range of Reynolds number between 70 and 2 × l04.
Abstract: Experiments on the vortex-shedding frequencies of various rectangular cylinders were conducted in a wind tunnel and in a water tank. The results show how Strouhal number varies with a width-to-height ratio of the cylinders in the range of Reynolds number between 70 and 2 × l04. There is found to exist a certain range of Reynolds number for the cylinders with the width-to-height ratios of 2 and 3 where flow pattern abruptly changes with a sudden discontinuity in Strouhal number. The changes in flow pattern corresponding to the discontinuity of Strouhal number have been confirmed by means of measurements of velocity distribution and flow visualization. These data are compared with those of other investigators. The experimental results have been found to show a good agreement with those of numerical calculations.

877 citations

Journal ArticleDOI
16 Oct 2003-Nature
TL;DR: Tuning cruise kinematics to optimize St seems to be a general principle of oscillatory lift-based propulsion of swimming and flying animals.
Abstract: Dimensionless numbers are important in biomechanics because their constancy can imply dynamic similarity between systems, despite possible differences in medium or scale. A dimensionless parameter that describes the tail or wing kinematics of swimming and flying animals is the Strouhal number, St = fA/U, which divides stroke frequency (f) and amplitude (A) by forward speed (U). St is known to govern a well-defined series of vortex growth and shedding regimes for airfoils undergoing pitching and heaving motions. Propulsive efficiency is high over a narrow range of St and usually peaks within the interval 0.2 < St < 0.4 (refs 3-8). Because natural selection is likely to tune animals for high propulsive efficiency, we expect it to constrain the range of St that animals use. This seems to be true for dolphins, sharks and bony fish, which swim at 0.2 < St < 0.4. Here we show that birds, bats and insects also converge on the same narrow range of St, but only when cruising. Tuning cruise kinematics to optimize St therefore seems to be a general principle of oscillatory lift-based propulsion.

865 citations

Journal ArticleDOI
TL;DR: In this paper, it was shown that a stable coexistence of the jet profile and the large-scale patterns is ensured only at the frequency of maximum amplification, hence at this frequency optimal efficiency is obtained, i.e., maximum thrust per unit input energy.

808 citations

01 Jul 1989
TL;DR: In this article, a prediction method for the self-generated noise of an airfoil blade encountering smooth flow was developed for a large scale-model helicopter rotor, and the predictions compared well with experimental broadband noise measurements.
Abstract: A prediction method is developed for the self-generated noise of an airfoil blade encountering smooth flow. The prediction methods for the individual self-noise mechanisms are semiempirical and are based on previous theoretical studies and data obtained from tests of two- and three-dimensional airfoil blade sections. The self-noise mechanisms are due to specific boundary-layer phenomena, that is, the boundary-layer turbulence passing the trailing edge, separated-boundary-layer and stalled flow over an airfoil, vortex shedding due to laminar boundary layer instabilities, vortex shedding from blunt trailing edges, and the turbulent vortex flow existing near the tip of lifting blades. The predictions are compared successfully with published data from three self-noise studies of different airfoil shapes. An application of the prediction method is reported for a large scale-model helicopter rotor, and the predictions compared well with experimental broadband noise measurements. A computer code of the method is given.

799 citations


Network Information
Related Topics (5)
Reynolds number
68.4K papers, 1.6M citations
95% related
Turbulence
112.1K papers, 2.7M citations
90% related
Laminar flow
56K papers, 1.2M citations
90% related
Boundary layer
64.9K papers, 1.4M citations
90% related
Fluid dynamics
47.9K papers, 1M citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023153
2022317
2021199
2020186
2019191
2018192