scispace - formally typeset
Search or ask a question
Topic

Strouhal number

About: Strouhal number is a research topic. Over the lifetime, 5203 publications have been published within this topic receiving 139840 citations. The topic is also known as: Thomson number.


Papers
More filters
Journal ArticleDOI
TL;DR: The effect of periodic two-dimensional excitation on the development of a turbulent mixing region was studied experimentally in this article, where controlled oscillations of variable ampli- tude and frequency were applied at the initiation of mixing between two parallel air streams.
Abstract: The effect of periodic two-dimensional excitation on the development of a turbulent mixing region was studied experimentally. Controlled oscillations of variable ampli- tude and frequency were applied at the initiation of mixing between two parallel air streams. The frequency of forcing was at least an order of magnitude lower than the initial instability frequency of the flow in order to test its effect far downstream. The effect of the velocity difference between the streams was also investigated in this experiment. A typical Reynolds number based on the velocity difference and the momentum thickness of the shear layer was l04.It was determined that the spreading rate of the mixing layer is sensitive to periodic surging even if the latter is so small that it does not contribute to the initial energy of the fluctuations. Oscillations at very small amplitudes tend to increase the spreading rate of the flow by enhancing the amalgamation of neighbouring eddies, but at higher amplitudes the flow resonates with the imposed oscillation. The resonance region can extend over a significant fraction of the test section depending on the Strouhal number and a dimensionless velocity-difference parameter. The flow in the resonance region consists of a single array of large, quasi-two-dimensional vortex lumps, which do not interact with one another. The exponential shape of the mean-velocity distribution is not affected in this region, but the spreading rate of the flow with increasing distance downstream is inhibited. The Reynolds stress in this region changes sign, indicating that energy is extracted from the turbulence to the mean motion; the intensity of the spanwise fluctuations is also reduced, suggesting that the flow tends to become more two-dimensional.Amalgamation of large coherent eddies is resumed beyond the resonance region, but the flow is not universally similar. There are many indications suggesting that the large eddies in the turbulent mixing layer at fairly large Re are governed by an inviscid instability.

648 citations

Journal ArticleDOI
TL;DR: The current understanding of the flow around two infinite circular cylinders of equal diameter immersed in a steady cross-flow, with a focus on the near-wake flow patterns, Reynolds number effects, intermediate wake structure and behaviour, and the general trends in the measurements of the aerodynamic force coefficients and Strouhal numbers are reviewed in this paper.

630 citations

Journal ArticleDOI
TL;DR: In this article, the Strouhal number and the mean base suction coefficient were measured at the mid-span position Reynolds numbers from about 50 to 4 × 104 were investigated.
Abstract: The investigation is concentrated on two important quantities – the Strouhal number and the mean base suction coefficient, both measured at the mid-span position Reynolds numbers from about 50 to 4 × 104 were investigated Different aspect ratios, at low blockage ratios, were achieved by varying the distance between circular end plates (end plate diameter ratios between 10 and 30) It was not possible, by using these end plates in uniform flow and at very large aspect ratios, to produce parallel shedding all over the laminar shedding regime However, parallel shedding at around mid-span was observed throughout this regime in cases when there was a slight but symmetrical increase in the free-stream velocity towards both ends of the cylinder At higher Re, the results at different aspect ratios were compared with those of a ‘quasi-infinite cylinder’ and the required aspect ratio to reach conditions independent of this parameter, within the experimental uncertainties, are given For instance, aspect ratios as large as L/D = 60–70 were needed in the range Re ≈ 4 × 103–104 With the smallest relative end plate diameter and for aspect ratios smaller than 7, a bi-stable flow switching between regular vortex shedding and ‘irregular flow’ was found at intermediate Reynolds number ranges in the subcritical regime (Re ≈ 2 × 103)

620 citations

Journal ArticleDOI
TL;DR: In this article, the k-e-v2 model is used to predict the time-averaged properties of bluff body flow, which is necessary to resolve the coherent vortex shedding.
Abstract: Tlirbulent separated flows over a backstep, in a plane diffuser and around a triangular cylinder, are computed with the k-e-v2 model. These provide examples of massive separation, of smooth separation, and of unsteady vortex shedding. It is shown that to accurately predict the time-averaged properties of bluff body flow, it is necessary to resolve the coherent vortex shedding. The near-wall treatment of the v2-/22 system of equations is able to cope with both the massive and smooth separations. Good agreement between experiment and prediction is found in all

592 citations


Network Information
Related Topics (5)
Reynolds number
68.4K papers, 1.6M citations
95% related
Turbulence
112.1K papers, 2.7M citations
90% related
Laminar flow
56K papers, 1.2M citations
90% related
Boundary layer
64.9K papers, 1.4M citations
90% related
Fluid dynamics
47.9K papers, 1M citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023153
2022317
2021199
2020186
2019191
2018192